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SECTION I

INTRODUCTION

Recent interest in developing high-speed commercial transports, as well as more advanced

reentry vehicles, has lead to a resurgence of research into hypersonic aerodynamics. Simulating

this flow regime requires the modeling of the chemical activity that characterizes it. Several re-

searchers have developed successful finite-rate chemistry codes (see Candler and MacCormack

[Reference 1], and Walters et al. [Reference 2]). However, finite-rate chemistry is both compli-

cated and expensive. In addition to the requirement that the reaction paths be known (a highly

non-trivial task in itself), finite-rate chemistry requires the substitution of a uswially large num-

ber of species continuity equations in place of the global mass conservation equation. Also, for

near equilibrium flows, the finite-rate equations become extremely stiff. Considering the diffi-

culties associated with finite-rate chemistry, flow simulations using the local chemical equilibri-

um assumption become very attractive.

In recent years, the numerical solution of chemical equilibrium problems has been investi-

gated by several researchers. Liu and Vinokur [Reference 3] give an excellent review of algo-

rithms for the determination of properties for an equilibrium gas mixture. Meintjes and Morgan

[Reference 4] present an interesting formulation based on defining all the necessary reactions in

terms of element variables.

Many researchers have developed flow solvers based upon curve fits for the equilibrium

properties [Reference 5-9]. However, it needs to be stressed that formulations based upon curve

fits, while competitive in terms of CPU time, are limited to a specific mixture composition for

each tabulation [Reference 10]. The study of arbitrary mixtures requires the creation of new tab-

ulations for each mixture of interest.

Other researchers have explored the capabilities of a flow solver based on the local chemical

equilibrium behavior of a given gas mixture. Finite-rate and chemical equilibrium computations

for blunt-body flow, using a 5-species air model, were compared by D6sid6ri, Glinsky and Het-

tena [Reference 11]. Davy, Lombard and Green [Reference 12] present viscous computations

which simulate an entry into the atmosphere of Jupiter, and Wang and Chen [Reference 13] pres-

ent rocket engine nozzle computations using hydrogen/air mixtures. However, the flow solvers

used in the above studies are incapable of handling arbitrary gas mixtures, and the codes would

have to be rewritten for a different gas mixture of interest.

The approach taken in this study involves the coupling of a "Black Box" chemical equilibri-

un solver with a thlee-dimensional, Thin Layer Navier-Stokes flow solver that has been modi-

fied to include real gas effects. The Black Box computes the equilibrium composition and tern-
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perature of gas mixtures at constant density and internal energy, and provides the flow solver

with the necessary thermodynamic and transport properties. The modifications to the flow solver

are minor, although they include the implementation of a newly derived approximate Riemann

solver of the Roe type. A key advantage of this "real gas" flow solver is the capability to handle

arbitary mixtures of thermally perfect gases in local chemical equilibrium.

The subject matter of the present study is divided into two parts. Part one concerns the de-

velopment and testing of the Black Box and is covered by Sections IH through V. The modifica-

tion of a perfect gas flow solver to include real gas effects and its subsequent application com-

prise the second part of this report, which is covered in Sections VI through VIII.

The mathematical foundations and governing equations for the determination of the equilib-

rium composition and thermodynamic properties of a homogeneous mixture of thermally perfect

gases are developed in Section HI. Two different solution procedures are proposed, and a third

discussed briefly. In Section III, practical models for the description of the thermochemical

properties are discussed. Included are various options for the thermodynamic model, equilibrium

constant, chemistry model, and transport properties. In Section IV, numerical procedures for the

solution of the governing equations developed in Section II are given. Results from the numeri-

cal testing of the Black Box chemical equilibrium solver are presented in Section V. Several

chemistry models and various compositions are utilized, and efficiency and robustness studies

are performed.

The governing equations for three-dimensional, viscous, heat-conducting flows written for

a time-dependent, generalized coordinate system are presented in Section VI. In Section VII, the

numerical methods for the solution of the gasdynamic equations are presented. Real gas formula-

tions are developed for the Steger-Warming flux-vector splitting scheme and split flux Jaco-

bians, as well as a newly derived approximate Riemann solver of the Roe-type. These algo-

rithms are cast in a manner compatible with their perfect gas counterparts. Applications of the

chemical equilibrium flow solver are given in Section VIII, along with comparisons with perfect

gas solutions.
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SECTION II

MATHEMATICAL FORMULATION: BLACK BOX

1. CHEMICAL EQUILIBRIUM

In order to classify the chemical activity that characterizes high-speed, high-temperature

flows, an order of magnitude analysis is usually made of the reaction time versus the fluid dy-

namic time. Specifically, considering a single control volume in the flow domain, the fluid dy-

namic time zcD can be defined to be the time it takes for a fluid particle to traverse this space.

The reaction time tCR may be taken as the time required to partially complete a chemical reac-

tion. There are three cases that occur,

<[ rCR,

FD '•CR (1)
">> ECR

The first case corresponds to frozen flow, in which the reaction has no time to occur. The second

case is the most general in which the reaction may or may not have time to complete, and is clas-

sified as finite-rate chemistry. For the last case, the reaction has infinite time to occur and thus

will reach its equilibrium composition. Physically, frozen and equilibrium chemistry represent

the limiting cases for the real-life situation: finite-rate chemistry. Furthermore, if the last case is

applicable at each volume in the flowfield and for all reactions occurring within the flow, then

the flowfield can be assumed to be in local chemical equilibrium.

In the following development, a gas mixture composed of N chemical species, in which

there are NE elemental species, will be considered. A general formulation of the chemical equa-

tions for NR reactions involving the N species Xi can be written

vi X, + V2, X 2 + ... +vN, XN(2
v1• X 1 + V2, X2 + ... + vNJ XN, r = ,...,NR, (2)

where vi,, vjr are the stoichiometric coefficients of species i in reaction r for the reactants and

products respectively.

Considering a reactive flow involving the above mentioned gas mixture, the governing fluid

dynamic equations can be derived following Vincenti and Kniger (Reference 14]. In particular,

the species continuity equations written in integral form for a control volume V bounded by a

control surface S are

3



where Qi is the species density, uii is the species velocity, iiý is the surface velocity and i! is the

unit vector normal to the control surface. The terms in the above equation represent, from left to

right, unsteady contributions integrated over the volume, inviscid and viscous fluxes integrated

over the surface, and a source term due to chemical reactions integrated over the volume.

The source term wi in Equation (3) represents the rate of production of species i and can be

written as

NR

wi = Aij (V - Vi) •
r=1 (4)

1kfH(l - kb;r H(-b-)] i = 1 .. , N,

where .,%.i is the molecular mass of species i and kf, , kbr are the forward and backward reac-

tion rates for reaction r, respectively. These reaction rates are related by

kfr = kbTKcr , (5)

where the equilibrium constant Kc is introduced, which is a known function of the thermody-

namic state. Substituting the preceding relation into Equation (4), the rate of production can be

rewritten in the following form

NR

Wi= ..Abj E(Vj" - vjTr)kb~
r•1

(6)

[KC•r1=1 ' 46 )v R -#Q I ) i = N,
1-11=

where at chemical equilibrium the term in brackets is identically zero because it reduces to the

Law of Mass Action

K = ir r= 1... ,NR, (7)

"1!=1

which is valid for equilibrium chemistry.

4



The limiting cases of equilibrium and frozen chemistry should be readily apparent in Equa-

tion (6). Frozen chemistry corresponds to the backward reaction rate going to zero, which results

in the rate of production terms going to zero and dropping from the species continuity equation.

In this case it can be shown that there will be no change in the species mass fractions if diffusion

is neglected. On the other hand, equilibrium chemistry corresponds to the backward reaction

rates approaching infinity. In this case the bracketed terms in Equation (6) go to zero and the rate

of production terms will reach a finite limit value which will balance out the unsteady, inviscid

and viscous contributions to the species continuity equations, Equation (3).

2. EQUATIONS OF STATE

A very important assumption in the following development is that the effect of intermolecu-

lar forces in the gas mixture is negligible. As a result, the individual gases comprising the mix-

ture will behave as thermally perfect gases. Moreover, the assumption of local chemical equilib-

rium implies that the thermodynamic state at any given time and any poii-it in space need be

defined as a function of only two state variables. For reasons that will become apparent later,

the density L and temperature T were chosen as the two fundamental state variables.

For a mixture composed of N species, the total density C and the mass fractions Yi are given

by the relations

NQ= Qii 
(8)

ill

Using the standard mixing rule, the mixture gas constant 1 is defined from the known species

properties

N

1- YiRi , (9)

where Ri is the gas constant for species i. Similarly, the total internal energy of a mixture can be

given as the sum of the species contributions, which results in the caloric equation of state

N N

e= Y~ej L= i ci,)c (10)
ifi1 iffi1 fTw ITI

where cvy is the species specific heat at constant volume and hf, is the species heat of formation -

at reference temperature Ta.

Since the mixture is composed of thermally perfect gases, the thermal equation of state will

be given by Dalton's Law

5



N

P = ZQiiRT = Q]RT,' (11)

where the total mixture pressure is the sum of the partial pressures. The thermal equation of

state is indirectly related to the caloric equation of state Equation (10) via temperature. Thus for

a given chemical composition the temperature must be obtained from either the caloric or the
thermal equation of state depending on whether internal energy or pressure is known.

The mixture specific heats can be derived as functions of density and temperature deriva-
tives of the mass fractions. The specific heat at constant volume is defined to be

Ivae\ N ~a~ N ( \(12
TYTj,) Ze7T aT)Q

Recognizing that the first partial is nothing more than the species specific heat at constant vol-
ume, the relation will reduce to

icl =[E +i(') (13)
aT/

where the frozen specific heat at constant volume

N

V= Yicv1 ,' (14)

has been introduced. The mixture specific heat at constant pressure can be defined as

(ahdh = (ah\ '+ (15h
--aT/l kaQ T+ aT (15)

where the mixture enthalpy h = e + RT has been introduced, which can be given as the sum of

the species contributions

N

h = Yihi , (16)
i=1

using the standard mixture rule. The enthalpy derivatives are then obtained as

0 8. h' ( (17)

and
( ) c =1[°Y'\ (18)

hý 
N, + hi - -- ,6

6



where the frozen specific heat at constant pressure has been introduced

N

E= Yicp• (19)
i= 1

The partial derivative of density with respect to temperature at constant pressure can be obtained
from the differential form of the thermal equation of state, Equation (11), as

N

( = ) T i=1 (20)aT T N /Y
P R+ o .K•Rj

Finally, substitution of Equations (17-20) into Equation (15) gives the mixture specific heat at
constant pressure

N

R+ T /R+( rI.)
i=1. __l• 0 Oi

S- + N R t)-QT "T] (21)
RZ + Q/ iR ayir

i=1

3. SPEED OF SOUND

A key thermodynamic property for high-speed flows is the speed of sound, which is defined
as

a2 () (22)

For a thermodynamic system in chemical equilibrium, the combined First and Second Laws of
Thermodynamics can be written as

Tds = de - -dQ. (23)

Q 2

Using the above relation, the equation for the speed of sound Equation (22) can be rewritten in
the following form

af2 L(+p 2p•p (24)

Using the differential forms of the caloric and thermal equations of state, Equations (10) and
(11) respectively, and Equation (23), the pressure partial derivatives are found to be

7



Tp + ZR( aY 1 )

(25)

and

(L ))= Q{[I + T jý-)](26)
a'e cv i a

Substituting Equations (25) and (26) into Equation (24), the equation for the speed of sound can

be put into a more familiar form

a - r , (27)

where the isentropic index r is defined to be

r = + 1--N( . )[RiT -- (y - )ei]. (28)
i=I /T

In the above equation, the ratio of the partial derivative of enthalpy with respect to temperature

at constant density to the partial derivative of energy with respect to temperature at constant den-
sity has been introduced

NX R {aY{•

(ahlaT\ /1 + i L? (29)i=la I + 29

QB cv

Although the above equation for the speed of sound is seemingly simple, it should be readily ap-
parent that the isentropic index is a complex function of density and temperature.

In general, there are at least four different "gammas" that can be defined for an equilibrium

gas: the two mentioned already, the ratio of specific heats y = cp/cv, and the ratio of frozen

specific heats 1 = Ep/Ev. Although generally their values are different, all four of these "gam-

mas" will reduce to the same value for frozen flows, of which perfect gas is a subset. More de-

tails on the derivation of the equilibrium sound speed are given in Appendix A.
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4. SOLUTION TECHNIQUES

As stated previously, chemical equilibrium is achieved when the reaction rates go to infinity.

Thus the species rate of production terms reach a limiting value and do so while keeping two

state properties constant. Examination of the species continuity equations, Equation (3), shows

that changes in these production terms occur at constant specific volume and thus constant densi-

ty. From the combined First and Second Laws of Thermodynamics, Equation (23), it can be seen

that for a reversible process occurring at constant density, the internal energy will also remain

constant. Therefore, evaluation of the equilibrium system will occur at constant density and in-

ternal energy.

Two different formulations for the solution of the chemical equilibrium state at constant

density and internal energy have been developed and will be discussed in detail in the following

subsections. The first is the Mass Constraint Technique, which uses a modified form of the laws

of mass action, plus elemental mass constraints and an energy equation. The resulting system of

equations can be reduced through the use of the concept of degree of advancement for a chemi-

cal reaction. This reduction is the foundation of the second formulation, which will be named the

Degree of Advancement Technique. Additionally, a third formulation, based on the work of

Meintjes and Morgan [Reference 4], was attempted. However, preliminary tests indicated that

this formulation was not suitable for calculations where temperature is not constant.

In addition to the previous formulations, the first method has been modified in order to

solve chemical equilibrium problems at constant pressure and temperature, and constant pressure

and density. The importance of these modifications will become apparent later, when the bound-

ary conditions for the flow solver will be described.

a. MASS CONSTRAINT TECHNIQUE

The chemical equilibrium state can be determined through the solution of an algebraic set of

N + 1 equations, comprising N-NE laws of mass action, NE elemental species mass constraints

and an energy equation, for N + 1 unknowns, N species densities and temperature. In this devel-

opment, the governing equations are written in a form compatible with finite-rate chemistry.

As stated previously, the limiting case of chemical equilibrium corresponds to backward

reaction rates going to infinity, and the bracketed terms in Equation (6) going to zero since they

reduce to the laws of mass action. In order to avoid the difficulties associated with the deter-

mination of the limit values, the backward reaction rates are assumed to have a finite value, uni-

ty, and the rates of productions are set equal to zero. This gives a modified form of the laws of

mass action that remains compatible to the finite-rate form expressed in Equation (6) while still

satisfying the chemical equilibrium state. These modified laws of mass action are written as

9



NR N N

w= (QjT) i I 'fl. r - ) - ( .r] ' 0 (30)
T= I =I

i=l .... N-NE,

where the index i now covers only the nonelemental species instead of the entire range.

The elemental mass conservation equations represent the fact that, in the absence of nuclear

reactions, mass is neither created nor destroyed, and are written as

WNNE+i(Qj) d% £ ./•.jJ = 0, i= l,....NE, (31)
j=1 i to

where aij is the number of particles of element i present in species j. The second term on the left

hand side represents the initial values at the beginning of the computation. The NE elemental
species need not be true elements themselves, but they must contain the element that they repre-

sent. An example would be the use of carbon monoxide CO as the elemental species for either
the element carbon C or the element oxygen 0.

In order to complete the system, an equation relating the unknown temperature to the known

state properties is needed. This is accomplished with the caloric equation of state, Equation (10),
written in terms of the total energy per unit volume

NT U2]
d(Qj, T) = Qeo - I Qj C[j(d)1  + h - = 0, (32)

where density Q, total energy per unit volume Qeo, and velocity uo are known quantities that are

readily available from any flow solver written in conservation form. The species specific heats at

constant volume c,, are functions of temperature and are provided by the thermodynamic mod-

els, which will be discussed in Section 1II.

b. DEGREE OF ADVANCEMENT TECHNIQUE

The use of the concept of degree of advancement for a chemical reaction provides an alter-
native formulation to the Mass Constraint Technique. This alternative formulation, titled the De-
gree of Advancement Technique, can provide a significant advantage over the previous formula-
tion. The advantage comes from reducing the system of N+I equations to as little as N-NE+I

equations by substituting degrees of advancements for the species densities.

For a single reaction of the form given by Equation (2), the ratio of the infinitesimal

changes in the number of moles for each species is proportional to the ratio of the differences

10



between the product and reactant stoichiometric coefficients of those species. This relationship is

written as

d-" : d 2 "..."d.'N = (v - Vi)" (V2 - V ) ". •(v -- V ) ,(33)

where X' is the mole number for the species j. An example of this relationship can be given for

the simple combustion reaction

2H 2 + 0 2 U 2H 20, (34)

where Equation (33) will read

d 2 : dX 2 d.N'H2o= (-2):(- 1) :(+ 2) . (35)

Introducing an infinitesimal constant of proportionality and recognizing that dXj = dYj/.Aý6j,

where Yj = QOJQ is the species mass fraction, these ratios can be rewritten as

dY1  dY2  dYN (
.V %1(vl - vl) -v - )

where ý is the degree of advancement for the reaction. Extending this approach to multiple,

coupled reactions, the degree of advancement ýr for reaction r can be defined by the differential
relation

Y--" =-•j(vj,r - v;,r) , j 1,...,N, r = 1,..., NR. (37)

Noting that density is kept constant, the system of NR equations for a species j can be solved to

give the species density as a function of the NR degrees of advancement

NR

Qj = (QPt-O + .. i46 ( - vQr) (,, j = j .... N, (38)

where the initial condition (ýr)t=O = 0 has been applied.

Using the above transformation relation, Equation (38), the laws of mass action as well as the
energy equation can be rewritten in terms of the degrees of advancement. Furthermore, substitut-
ing Equation (38) into the mass constraint equations Equation (31), as followsI-I )t.o + "hb•1 (vjr - v;ir)r] ]to' (39)

.NE,



results, after some manipulation, into the expressiun

i.r- = 0, i = 1....NE. (40)

r=1~j I

It is easily verified that the bracketed terms go to zero identically since reaction r must be stoi-

chiometrically balanced with respect to element i. To illustrate this, consider again the example

of the simple combustion reaction consisting of the three species H2, 02 and H20. The elemental

species are selected as H2 and 02 and represent the two elements, atomic hydrogen H and oxy-

gen 0, respectively. Expanding the bracketed terms for each element gives

2(0 - 2) + 0(0 - 1) + 2(2 - 0) =- 0, Element.= H, (41)

0(0 - 2) + 2(0 - 1) + 1(2 - 0) a 0, Element= 0. (42)

Thus the mass constraints are implicitly satisfied and are eliminated from the governing equa-

tions because the degrees of advancement will stoichiometrically balance the individual reac-

tions. The resulting system of equations consists of NR laws of mass action and an energy equa-

tion, with the unknowns being the degrees of advancement and temperature. The maximum

advantage over the Mass Constraint Technique is obtained when the number of reactions is equal

to the minimum number of necessary reactions, NR = N - NE.

c. SYSTEMS AS FUNCTIONS OF ALTERNATE STATE PROPERTIES

In the previous sections the caloric equation of state was employed to find the chemical

composition of the gas mixture. This choice works well for control volumes in the flow field,
since the two known state variables are density and internal energy. However, either or both of

these state variables may not be available at the boundaries if certain boundary conditions are to

be enforced. For example, the known state variables for specified pressure and temperature gra-

dient boundary conditions are pressure and temperature. Another example is subsonic character-

istic variable boundary conditions whereby pressure and density are known. Consequently, the

determination of the equilibrium composition at boundary points has to be handled separately.

When pressure is a known property, as in both of the above mentioned examples, the thermal

equation of state, Equation (11), can be employed instead of the caloric equation of state. The

other equations in the system remain unchanged. However, while the unknowns are still species

densities and temperature for the first example, (p - Q case), they become the species densities

and total density for the second example, (p - T case).
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5. THERMODYNAMIC PROPERTIES

The next step following the determination of the equilibrium composition is the ev iuation

of any thermodynamic properties of interest, which include pressure, speed of sound, and isen-

tropic index r (commonly used in flux-split numerical schemes).

Evaluation of some of these properties requires knowledge of partial derivatives of the mass

fractions with respect to density and temperature, as can be seen from the expression for the

speed of sound, Equations (27-29). These derivatives can be expressed as functions of the partial

derivatives of the species densities, and are given as

ay, I 1Q'g (43)

aYi 1 aQi (44)

aYT _ aT

The derivatives of the species densities can be obtained using the Implicit Function Theo-

rem. Specifically, the first set of N equations in the M.,s Lonstraint Technique implicitly define

N functions of density and temperature

wi[QI(QT),Q2(0,T),..., lNWT)] = 0 , i = 1, ... ,N , (45)

where the species densities are the N functions, Qj = Qj(Q, T). The Implicit Function Theorem

states that the derivatives of the N functions with respect to density and temperature are given by
the solution of dwi = 0 provided that the partial derivatives of wi exist and are continuous, and

the determinant of matrix A = awi/aQj is not zero. Thus the derivatives of the species densities

with respect to density and temperature are obtained through the solution of the following sys-
tems

A(-) B, (46)kaQ

A-C, (47)

where B = awi/aQ and C = awi/BT.

This procedure can be similarly applied to the Degree of Advancement Technique, where

the functions are now N - NE degrees of advancements, r = , T). The linear systems are

now

13



A( ) -- , (48)

where matrix A = awi/at,, and the right-hand sides of both systems remain the same. Using
the differential form of the transformation relation, Equation (37), the partial derivatives of the
mass fractions can be given in terms of the partial derivatives of the degrees of advancement, as

follows

ay. =N-NE

""- vi ,r -v )-j. (50)

aYi = NNE
h"4- - v' T) (51)
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SECTION III

PRACTICAL MODELS

The mathematical foundation of local chemical equilibrium has been given in the previous

section for an arbitrary mixture of thermally perfect gases. No restrictive assumptions have been

placed on the functional form of the species internal energy, with the exception that each compo-
nent is considered to behave as a thermally perfect gas. Similarly, the equilibrium constant, the

chemical system and the other related properties have been given in general form. Therefore,

virtually any practical model can be utilized in conjunction with the present formulation. The

specific models developed and used in the "Black Box" for the species internal energy, the equi-

librium constant, the chemical system and the transport properties are given in the following.

1. INTERNAL ENERGY

There are two thermodynamic models available for use in the Black Box. The first is an

equilibrium statistical mechanics model and will be referred to as the Vibrational Model. The

second model is based on polynomial curvefits and will be termed the Curvefit Model.

a. VIBRATIONAL MODEL

From statistical mechanics, the internal energy can be taken as the sum of the translational,
rotational, vibrational and electronic contributions [Reference 14]. Neglecting the electronic con-

tributions and considering the translational and rotational contributions at their fully excited val-

ues the equation for the species internal energy will read

e= nRiT + e--i 1 + hf' i 1,...,N, (52)

where the vibrational contributions are modeled as simple harmonic oscillators. In the above,

0vi are the characteristic temperatures for vibration and the summation represents the fact that

for polyatomic molecules there will be more than one vibrational temperature. The number of

vibrational temperatures for species i is defined to be NVTi. In Equation (52), the first term rep-
resents the translational and rotational contributions. The parameter ni will have a value of 3/2
for a monatomic gas, 5/2 for a diatomic or linear polyatomic gas and 6/2 for a nonlinear poly-
atomic gas. The characteristic vibrational temperatures are obtained from the JANAF tables

[Reference 22].
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b. CURVEFIT MODEL

The Curvefit Model uses fourth-order polynomials to curvefit the species specific heat at

constant volume

cvi =aW + a2ý T + a3 T2 + a0 T 3 + T4 (53)

where the internal energy is given by

T
e1lf a6, +l v(xd, 1= 1,....,N. (54)

There are several curvefit formulations available in the literature. McBride et al [Reference 15].

give curvefits for molecules involving the first 18 elements, which are applicable up to 6000 K.

This range was extended to 15,000 K for carbon, hydrogen, nitrogen and oxygen systems by

Esch et al [Reference 16]. Gupta et al [Reference 17]. provide improved curvefits, applicable up

to 30,000 K for an 11-species air model. In the Black Box, the first set of curvefits is used for

argon systems, the second set for carbon and hydrogen systems, and the latter curvefits are uti-

lized for the eleven species air model they were intended for.

2. EQUILIBRIUM CONSTANT

The equilibrium constants define the equilibrium composition of the mixture and are func-

tions of temperature. The Black Box incorporates two models for their determination. In the first

one, experimental values are curvefitted employing an Armehius-type functional form. The se-

cond model derives the equilibrium constant from the species Gibb's free energy, following the

example of Liepmann and Roshko [Reference 18].

a. CURVEFIT KI

The first model is based on curvefits compatible with Arrenhius type chemistry

Kcr = CoT'•-e-r , r =1.,NR ,(55)

where the constants can be found in Vincenti and Kruger [Reference 14] for a 7-species air mod-

el and Kang and Dunn [Reference 19] for an 11-species air model. The major advantage of the

Curvefit Kc is the use of accurate empirical data for the determination of the equilibrium

constant. However, this leads to a disadvantage in that the empirical data may not be available.
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b. CONSISTENT Kc

The second model is based on the minimization of Gibb's free energy at constant pressure
and temperature. Thus the equilibrium constant can be obtained indirectly from the thermody-

namic model and therefore is not limited to the availability of experimental data. This model,
termed the Consistent Kc Model, is very general and depends only on the availability of certain
reference values which are much easier to obtain than the curvefits mentioned previously. How-

ever, any errors introduced by assumptions and simplifications made in the thermodynamic mod-

el are inherited by the equilibrium constant.

Gibbs's free energy for a species can be written as

gi= hi - Tsi,
T T

-I Cp('t~z P i) (56)

- i' Cp,()dc + hfi - T cpid + RiTln -Ts (56)
'. TT.(

where the equation for species entropy and enthalpy have been utilized. In the above, sf, and hfi

are the reference entropy and enthalpy taken at the reference temperature Tref and pressure pf,.

Using the standard mixture rule, the total Gibb's free energy for the mixture is then

g= E J T cp(d - T -fd-+ + h

i= If~f T f~ T IT fi(57)
N LiRiT Npi\

+ 10 ) - T 1 -s,.

Gibb's free energy can be written as a function of pressure, temperature and the degrees of ad-

vancement, g = g( p, T, tr). Chemical equilibrium occurs at the point where the Gibb's free
energy is a minimum under constant pressure and temperature. Minimizing the above equation

for reaction r at constant pressure and temperature, ag/lat = 0, utilizing the differential form of

the transformation relation Equation (37), and taking the exponential of both sides, results in the

expression N N S [ N
H(pf.)(v- -v.,)exp - (58)

where

Cogs -R 8Tln(p) = J cp.(Qd'-TJ e d + hh -Tsf. (59)
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The previous formula is the Law of Mass Action written in terms of the partial pressures. Ex-
pressing the constant in terms of the concentrations and assuming that the reference pressure is

the same for all species (pf, = Prf), the following relation for the equilibrium constant is ob-

tained

N

(v(,vT exp - S NV' - , (60
RT) _ (v

where

QSr-- =o(3() (61)R.T

The term wo given in Equation is determined by the thermodynamic model employed. In the fi-

nal form, the term 0, will be given for the Curvefit Model as follows

T T 3 _ T4 a+ 6,)Q,( = al',(l- In(T) - a6,2) -- 3., _ _ a, .

and for the Vibrational Model as

Q.(T) = 1 + n, + In(1 - e- OV/Tr) - (1 + n.)InT + h°/RsT - s°/R. (63)

The last two terms of the above relations are identical, because the constants a6,. and a7., read

a,, = h°/R, , a7, = s°/Rs , (64)

where h. and so are the species enthalpy and entropy at a reference temperature of absolute zero.

3. CHEMISTRY MODELS

As stated in Section I, a main requirement of the solver is the capability to handle arbitrary

mixtures. The incorporation of additional models to the Black Box is a relatively painless pro-

cess, provided that a few key reference values (i.e. heats of formation) can be supplied for the
mixture components. The Black Box currently has available 12 different chemistry models.

These include 6 air models (ranging from a simple 5-species to a relatively complex 17-spe-

cies), 3 combustion models and an argon plasma model. In order to provide the flow solver with

the capability to revert to a perfect gas solver, a perfect gas model is also included, with the spe-
cific gas being selected at input from a set comprising air, Ar, CO2, CO, N2, 02, H2 and steam.
Debugging and testing of the code was accomplished using an ideally dissociating oxygen model

02 U 20, (65)

where the constants for the dissociation of oxygen were obtained from Ymcenti and Kruger[Ref-

erence 14]. In the following, the latter model will be referred to as Oxygen Model.
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a. AIR MODELS

The first air model is composed of five species, N2, 02, NO, N and 0, where three indepen-

dent reactions are used

N2 - 2N, (66)

02 20, (67)

NO N + O. (68)

Atomic nitrogen and oxygen are the two elemental species and N2, 02, NO are the non-elemen-
tal species. Two mass constraints are used to preserve the total mass of atomic oxygen and nitro-

gen. This model will be referred to as 5-Species Air Model. Unless otherwise noted, the air

models will be referred to by the number of species present

The second model adds two more species, NO+ and e-, to the model listed above, for a

total of seven. The additional independent reaction

NO U NO+ + e, (69)

is needed to describe the ionization of NO. Conservation of the total number of electrons is pro-

vided as an additional mass constraint and NO + will act as a non-elemental species.

The third model utilizes nine species, adding N + and 0 + to the seven above. Two more
independent reactions are needed, describing the ionization of atomic oxygen and nitrogen

NU-N+ + e- (70)

0-*0+ + e- ,(71)

and bringing the total number of reactions to six. No additional mass constraints are necessary,

due to the fact that the two additional species are non-elemental species.

Two more independent reactions are needed for the fourth model

N2 -- N+ + e- , (72)

02:=02 +e- , (73)

which comprises eleven species, with the addition of N+ and O to the previous nine. Again,

there ae no new mass constraints, because the additional species are not elements.

The fifth model is obtained by adding the base element argon to the previous model, for a

total of thirteen species. The two additional species considered ae Ar and Ar +. The ionization

of argon is described by the additional reaction
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Ar -- Ar' + e (74)

and Ar + acts as a nonelemental species. An additional mass constraint for the preservation of

argon is also required.

The sixth and most complex air model employs seventeen species, the thirteen above plus C,

C +, CO and CO2. Three more independent reactions are needed

2CO2 * 2CO + 0 2 , (75)

2CO±- 2C + 02 (76)

C--C+ +e- (77)

along with the previous nine. The inclusion of carbon requires the addition of another mass

constraint conserving this element, and the additional nonelemental species are C +, CO and
CO2. The 17-Species Air Model employs consistent equilibrium constants only, since no curve-

fits for the last three equations have been found.

b. COMBUSTION MODELS

Combustion mixtures provide good examples of the difficulties associated with the use of
curvefits for the determination of equilibrium compositions, since there are nearly infinite possi-

bilities for the mixture ratio. Utilizing curvefits would require a matching number of tabulations.
The only viable alternatives are either the method presented in this study or finite-rate chemistry
investigations with all their inherent complexities.

The first combustion model is the simple two-reaction hydrogen combustion in air pres-

ented in Rogers and Chinitz [Reference 201, and will be referred to as the Hydrogen-Air Com-

bustion Model. A total of five species are utilied, where the nonelemental species are H2 and

02. The two independent reactions are

H2 + O2 U 2OH , (78)

20H + 02 U 2H20, (79)

where nitrogen is considered to be inet, and three mass constraints provide for the conservation

of nitrogen, oxygen and hydrogen. N2, OH, and H20 were selected as the elemental species,

where the latter two were chosen in order to show how arbitrary the differentiation between ele-

mental and nonelemental species can be.

The second combustion model corresponds to the combustion of hydrogen in oxygen and
will be referred to as Hydrogen-Oxygen Combustion Model. The six species 02, H2, OH, H20,

O and H comprise the mixture and the four required reactions are
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02 20, (80)

H2  2H, (81)

OHUO+ H, (82)

H20 ±-; 2H + 0, (83)

Here, two mass constraints are used for the preservation of oxygen and hydrogen, and the ele-

mental species are 0 and H.

The last model is taken from Meintjes and Morgan [Reference 4], and is composed of the

above six species plus C0 2, CO and N2. One additional independent reaction is required

C02 CO + 0. (84)

Conservation of hydrogen, oxygen, carbon and nitrogen is ensured through the use of four mass
constraints, where the elemental species are H, 0, CO and the inert N2. This model will be re-

ferred to as the Hydrocarbon Combustion Model.

c. ARGON PLASMA MODEL

The Argon Model provides a simple example of high energy plasmas. It employs three spe-

cies Ar +, Ar and e-, and one reaction is required

Ar Ar+ + e-, (85)

describing the ionization of argon. Two mass constraints are employed for the conservation of

electrons and argon, and Ar + will act as the nonelemental species. Constants for the equilibrium

constant are obtained from Glass and Takano [Reference 21].

Implementation of all the above models in the Black Box is accomplished through the use of

a chemical model database. For each of the species listed above, this database contains all the

various chemical and thermodynamic properties necessary for the solution of the governing
equations. Moreover, the stoichiometric coefficients and curvefit constants for various reactions

are given in terms of all the species available in the database. The chemistry model of interest is

then constructed from this database by specifying which species are present, which reactions to

use, etc. The presence of the database makes the implementation of additional models a very

simple process.

4. TRANSPORT PROPERTIES

After the equilibrium composition has been obtained by means of the techniques discussed

in Section I, the mixture transport properties can be easily evaluated by following two sequential
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steps. The first is the determination of the properties for the individual species, whereas the se-

cond involves the application of a mixing rule to obtain the global values.

a. SPECIES VISCOSITY

Two models for species viscosity are implemented in the Black Box. The first model for

species viscosity is a straightforward extension of Sutherland's Law to multicomponent mixtures

and is referred to as the Sutherland Model. The species viscosity is given by the relation

pti _-T3/2 (86
T +G ' (86)

where the constant F P and G, are empirically determined.

The second model is based on the curvefit tabulations by Gupta et al. [Reference 17], which

are valid for air chemistry up to eleven species and 30,000 K. The equation for species viscosity

will read

Pi - eCoi T[AIfnT+B•,uI (87)

where A0, B, and C,, are the curvefit coefficients. This model will be referred to as Gupta

Model. While more accurate at higher temperatures than Sutherland's Law, the Gupta Model

does not fair well below 1000 K. Therefore for temperatures below this limit, the Sutherland

Model will be used.

b. SPECIES THERMAL CONDUCTIVITY

Similarly to what has been seen for viscosity, two models are employed for the species ther-

mal conductivity. The Sutherland Model reads

%.=i = T 3/2  FG (88)

where the constants Fji and G%.i are empirically determined. The Gupta Model is given by

%i = evzA TA,,jOn)3+B,.PI)Z2+C.,InT+D.j], (89)

where Al, B*, CA.,, Dt_,, and Ej are the curvefit coefficients. Again, the Sutherland Model

is used for temperatures below 1000 K.

c. MIXTURE RULES

Once the species values for the transport properties have been found, then an appropriate

mixing rule is applied to give the total mixture property. Two mixture rules are implemented and
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can be used with either the Sutherland Model or Gupta Model for the transport properties. The

first mixing rule is the "standard" Wilke's Rule as follows

N

g5= i' (90)
i=1

where the weighting function is given by

W Xiwi= (91

E Xj *ij9
j=1

with the coefficient i•ij given by the following expression

_,f2 1 ) F91- 1/4] 2 (92)

In the above, T denot; "-ansport property and stands for either viscosity or thermal conductiv-

ity. Also, the speci:s concentration Xi = Qi1Aj has been introduced. This mixing rule will be

referred to as Wilke's Rule.

Gupta et al. [Reference 17], propose an improved, but more complicated mixing rule based

on the collision cross-sections. The mixture rule will have the same form as in Equation (90) but

the weighting function is now given by

Wi 2Xi , (93)
j-1 X J ii

where

= e% T[^A al nr)'+B% l"nT+CU5 T] •](94)

Here, the collision cross-sections U4 have been introduced and AQ., Ba, C.• and D., are

the curvefit coefficients. This will be referred to as Gupta's Rule.

23



SECTION IV

NUMERICAL FORMULATION: BLACK BOX

In the following, details of the numerical algorithms used to determine the equilibrium com-

position are given. In addition, the methods developed in Section 1I to obtain the thermodynamic

properties of a gas mixture in local chemical equilibrium are further illustrated. The possibility

of multiple solutions to the chemical equilibrium problem and the correction strategies employed

to prevent non-physical results are also discussed. Finally, methods used to enhance the robust-

ness and efficiency of the "Black Box" are detailed.

1. "BLACK BOX" SOLVER

The first step in the numerical solution of the systems of nonlinear governing equations de-

veloped in Section II involves the linearization of the equations using the Newton-Raphson tech-

nique. The linear system will have the form

Ax = b, (95)

where A is the (H + 1) x (H + 1) Jacobian matrix. For the Mass Constraint Technique H

equals N, and for the Degree of Advancement Technique H will be equal to N - NE. The se-

cond step comprises the direct inversion of the linear system by means of a LU decomposition,

where partial pivoting is employed. Relative and absolute reduction of the residual vector is

checked and iterations are performed using double-byte arithmetic until either has reached a pre-

scribed tolerance. For use with the flow solver, the matrix of computational cells are converted

to a vector, so that the Black Box solves one system of equations per cell in the flow field, and

vectorizes easily over the number of computational cells.

a. MASS CONSTRAINT TECHNIQUE

The specific components of the linearized system of equations, Equation (95), for the Mass

Constraint Technique, written for constant density and interal energy, will have the following

form
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awl awl aw 1
0Ql ' i•a

aWN-NE aWN-NE aWN-NE

aL I ... aQN aT

A aWN-N'E+ WN-NE+l aWN-NE+l (96)aQ, aQN aT

aWN aWN aWN

... aOQN aT
ad ad ad

aQ . aQN aT

xT = [AQ 1, ... , AQN, AT], (97)

V= --- [WI, "'"WN-NE' WN-N']+ 1'"'" WN'd] "(98)

In the above, w denotes the laws of mass action and the mass constraints, and d denotes the ener-

gy equation. These have been already defined by Equations (30-32). In addition, the partial de-

rivatives of the laws of mass action will read

NR N VL ""awi = /Ai I "ve |b[cr & j

a j " Jr=l m=--1=I

NR N m ,1

11( -J, i= ... ,N - NE
rT_ = A I M V (100)

where in Equation (99)

Vm,r (Vmr"I) if m jn,v' - I• v" -- 1)f n V "n V;w
V W(vm•)- ,- (r) I)r MO ~ad. ,) O

0 if Vm•r (Vm•v) = 0.

The partial derivatives of the mass constraints are

-a (101)
aej O.,Aj

aw-1+i 1 ... ,NE (102)
aT
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Finally, the partial derivatives of the equation of state are given by

T
ad =ej= Cjzd + hf , (103)

ad _ - (104)
~TTc

b. DEGREE OF ADVANCEMENT TECHNIQUE

The specific components of the linearized system of equations, Equation (95), for the De-

gree of Advancement Technique, written for constant density and internal energy, will have the

following form

8wI .9wI .w 1

A = aW•€_m aWNM aWN-A_ (105)
a .. a N_ l aT

ad ad ad

xT = [A ... , A•NNE, AT], (106)

bT = - [w1, .... WNNE.,d] . (107)

The advantage of the Degree of Advancement Technique should be readily apparent in the

above. The system has been reduced from N + 1 to N - NE + I equations. However, while the

Jacobian is smaller component-wise, it has been rendered computationally more complex. Using

the differential form of the transformation relation, Equation (37), the partial derivatives with

respect to the degrees of advancement can be written in terms of the previous entries as follows

__Wi Q A2 _" r Wi (108)
a -

N

Md • iw.•( -' 1d (109)

where the partials with respect to temperature remain the same and the mass constraint equations

have been eliminated.
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2. ALTERNATE THERMODYNAMIC SYSTEMS

The preceding subsection dealt with the general situation of the complete thermodynamic

system being defined by density and internal energy, CTS = f(Q, e). As was discussed in Sec-

tion IH, situations arise where the complete thermodynamic system is known as a function of

pressure and density, CTS = f(p, Q), or as a function of pressure and temperature,

CTS = f(p, T). In the following discussion on these alternate thermodynamic systems, only the

Mass Constraint Technique will be considered.

For the situation where CTS = f(p, Q), the linearized system for the Mass Constraint Tech-

nique, given by Equations (96-98), remains the same, with the exception that closure is now

provided by the thermal equation of state

N

d(Q,'T) = ZQjRjT - (P)o = 0, (110)
j=l

where (p)o is the initial pressure. The partial derivatives of the equation of state, previously giv-

en by Equations (103) and (104), are now written as

a.d = RjT , (111)
aQj

ad =R (112)

The situation where pressure and temperature are known, CTS = f(p, T), requires more

modification. As stated previously, the dependent variables are now species densities and total
density, and the thermal equation of state has replaced the caloric equation of state in the govern-

ing equations. Although total density is nothing more than the sum of the species densities and
would indicate that one equation could be dropped from the system, reducing the size of the

problem is not practical. In fact, the state relationship is required to define the thermodynamic

state and while it could be substituted into the rate equations, this would increase the complexity

of the Jacobians, making them more expensive to compute. The linearized system for constant
pressure and temperature will be
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Ow1  Ow1  3w1

OWN-NE OWN-NE OWN-NE
aQl ... aQN aQ

A - WN-NE+I OWN-NF.+l 8WN-NE+l
AQI " QN a,(113)

aWN aWN OWN
ag1 ... aQN 09

ad ad ad
ae, ... aQN aN

xT ( , " QN, AQ] , (114)

and the residual vector remains the same. The partial derivatives of the laws of mass action with
respect to the species densities remain the same and are given by Equation (99), whereas the par-
tial derivatives of the laws of mass action with respect to total density are zero. The partial de-
rivatives of the mass constraints are given as

aWN-NES+i, a.-- (115)
agj 9.•j'

aWN- +i N SLY i= 1,= .. ,NE . (116)
aQQ :4t. j

j . 1i J

Recognizing that pressure and temperature are constant, the thermal equation of state can be

written in the form

N

d(Qj,Q) = QjRjM(T)o - (P)o = 0, (117)
Ji=

where the terms denoted by ( )o represent initial conditions. The partial derivatives of the ther-

mal equation of state will then be

ad RjTo (118)
agj

-d 0 (119)
aQ
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3. THERMODYNAMIC PROPERTIES

Once the composition of a mixture of thermally perfect gases has been evaluated, the ther-

modynamic properties of the mixture can be determined. These are primarily functions of the
temperature and density derivatives of the species densities. As was discussed in Section IH, the

determination of these derivatives is a straightforward process involving the solution of two lin-
ear systems of algebraic equations, provided that temperature and density derivatives of the gov-

erning equations are readily available. This is indeed the case when the Newton-Raphson algo-
rithm is utilized.

Taking the Mass Constraint Technique as an example, it should be readily apparent that the

first N rows and columns of the converged Jacobian matrix corresponds to the matrix A required

to determine the partial derivatives. Also, the last column of the Jacobian matrix is the RHS, giv-
en by C in Equation (47), for the temperature derivative computation. The RHS for the density

dervatives, given by B in Equation (46), is also easily derived and will be

aw.

i= I ... N- NE, (120)

and

3WN-NE+i N 1 a• *,,dwNN+ _ I- .W iY.J i = I,...,NE. (121)

J=1

Similar considerations can be applied to the Degree of Advancement Technique, where the
matrix A is now given by the first N - NE rows and columns of the Jacobian matrix at conver-
gence. The RHS terms will be the same as those for the Mass Constraint Technique. Therefore,

at convergence, the temperature and density derivatives are easily evaluated. At this point, the

reason behind the choice of density and temperature as the two fundamental state variables to

describe the properties of a mixture in local chemical equilibrium becomes apparent. If one were
to choose density and internal energy, for example, evaluation of the partial derivatives with re-
spect to e would be computationally more expensive than the method presented above, due to the
fact that the laws of mass action are not explicitly defined in terms of internal energy.

4. MULTIPLE SOLUTIONS

"Ile possibility of multiple solutions is an interesting yet troublesome problem that affects

chemical equilibrium calculations. The nonlinear nature of the governing equations potentially

allows several different mathematical solutions for the same set of equations.

An example of this occurrence can be given for the 5-Species Air Model using the Vibra-

tional Model and Curvefit Kc. The initial guess for the temperature is 5000 K and the initial
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guesses for the mass fractions are the exact values, where density @ = 8 . 676 x 10 - 2kg/m 3

and internal energy e = 6. 271 x 106kJ/kg have been specified. Table 1 gives the temperature

and composition for two solutions obtained for the problem defined above. Although both math-

ematically satisfy the laws of mass action, mass constraints and energy equation, the first solu-

tion is physically not possible since mass fractions cannot have negative values. Physically, there

can be only one solution with nonnegative mass fractions, since the specification of two state

variables describes a unique thermodynamic state. The above example illustrates the possibility

of negative densities, but it is also possible to obtain solutions with negative temperatures.

In light of the problem mentioned above, three techniques were developed to guide conver-

gence to the one physical solution. The first two methods employ a scaling factor to reduce the

magnitude of the species densities updates, A(i = (n+ I- ()F, where the superscript Is repre-

sents the iteration level. The first method will be called Catastrophic Limiter and it intervenes

only when a species density is going to become negative from the iteration update. The second

method limits the magnitude of the relative change in species densities at every iteration, and is

called Relative Limiter. If the same scaling factor is used on all the species densities updates,

then it can be shown that the mass constraints will not be violated. This is important when using

these methods with the Degree of Advancement Technique, which does not explicitly enforce the

mass constraints. The scaling factor a will have the form

o=max amin [mini 1 , 1  ]I , I i>0, i= N (122)

where 0 is the maximum allowed relative change in species densities

> i ... ,N. (123)

The only difference between the two methods is that Relative Limiter applies the correction at

each iteration, while Catastrophic Limiter applies the correction only when a species density

would become negative as a result of the update. In order to prevent the convergence process

from slowing down dramatically, the scaling factor is limited to a minimum value, am. The

new value for the species densities updates will then be given by

AP =ao AQId , i =,...,N. (124)

Neither of the above methods can prevent negative species densities from occurring in the tran-

sient when extenuating circumstances occur (i.e. QP = 0 and AQi < 0). However, the negative

species densities are omitted from the scaling factor evaluation, see Equation (122), since en-
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forcing a scaling factor on the negative species densities would prevent those densities from be-

coming positive again.

While the use of a common scaling factor ensures satisfaction of the mass constraints, the

linearized equation of state would not be satisfied by the modified species densities updates, un-

less the temperature update is also suitably modified. This can be accomplished by resolving the

last row of the governing system for the modified temperature update, using the modified spe-

cies densities updates.

The third correction method is based on the absolute Newton's method described by

Meintjes and Morgan [Reference 4], and will be called Absolute Newton Limiter. Negative spe-

cies are avoided by taking the new values of the species densities, to be the absolute value of the

sum of the old values and their updates, :n+ I = I QP + AQi I .This method does not use a

common scaling factor and hence violation of the mass constraints is possible during the itera-

tive process. Due to this violation, the Absolute Newton Limiter is unsuitable for use with the
Degree of Advancement Technique, as will be shown in the results.

Another occurrence associated with the Newton-Raphson method is the over-shooting of

the temperature, which can lead to negative temperatures. This is especially possible for ill-
posed problems involving low temperature compositions where the initial guess for temperature

is given as a large value. When written in terms of temperature instead of species density, the

Relative Limiter and Absolute Newton Limiter can be used to prevent these over-shootings.

5. ROBUSTNESS AND EFFICIENCY

Several techniques were employed to enhance the robustness and efficiency of the Black
Box. These techniques include improving the initial estimates of the dependent variables, reduc-

ing the size of the vector of computational cells solved by the Black Box, and freezing the chem-

istry.

a. INITIAL GUESS

One of the key factors in the robustness and efficiency of a numerical scheme employing the
Newton-Raphson method is the availability of "good" initial guesses. Two methods are

employed in the Black Box to provide these "good" initial guesses for the species densities and

temperature. The first one consists of assigning the values obtained at the previous time step to
the new values. Thus given new values for density and total energy per unit volume from the
flow solver, the initial guesses for the species densities and temperature will be

9n+ _ (yflno+ , Tn , (125)
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where the superscript n again denotes the time step.

The second method uses the mass fraction derivatives to provide an improved initial guess.

The updated values will be given by

QP+1 KniP+ (,Yi~n A+ (
Qfl:.iu• Ac , i1,... N, (126)

o ̀ = 1' a + . j

Tn+ 1 - Tn + AQ + (Tn)Ae ,(127)

where the partial derivatives are

(Br) 1 (128)Q -cv'

BTý -= - 1N ejI"y' (129)

apr ach e = ()y(TB) = ( aT (B' (130)

-Z e' (131)

and AQ Qn+ 1 = "and Ae = en+ 1 - en are provided by the flow solver. The partial deriva-

tives of the species mass fractions with respect to density and temperature are obtained from the
approach already described.

b. VECTOR REDUCTION

A very effective method used to increase the efficiency of the Black Box is vector reduction,

whereby the vector of computational cells is reduced in size as cells converge. Considering

three-dimensional flow simulations, initially all the computational cells are stored in an active

vector with a vector length equal to the product of the three dimensions of the computational

matrix under consideration. The residuals for each of the governing systems is checked at each

iteration for convergence. As a cell converges it is removed from the active vector and the vector

length is correspondingly reduced. Thus the expense associated with the computation of the Ja-

cobians for converged cells is not incurred and iterations are performed on the unconverged cells

only. The efficiency of vector reduction does not come without cost. In order to implement the
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vector reduction, a memory intensive data structure is used to keep track of the cells in the vec-
tor and their corresponding positions in the computational matrix. However, it will be seen in the

results section that the benefits definitely outweigh the costs.

c. FREEZING THE CHEMISTRY

As should be apparent, use of the Black Box to provide the composition and thermodynamic

properties of a gas mixture for use in a flow solver requires some computational expense. This

expense can be reduced by freezing the chemistry for a desired number of iterations of the flow

solver, where the chemical composition would be evaluated at every kth iteration instead of at

every iteration of the flow solver. At the iterations where the chemistry is frozen, the mass frac-

tions are considered to be constants. Thus the governing system of equations in the Black Box
would reduce to an equation of state only and the unknowns would reduce to just temperature or

total density, depending on the known state variables. Iterations still need to be performed for the

general case, CTS = f(t, e), since the caloric equation of state is a nonlinear function of temper-

ature and cannot be solved directly. However, solutions for the cases CTS = f(p, Q) and

CTS = f(p, T) are easily obtained, where the thermal equation of state can be solved directly. In

the first case, temperature is readily given as

PT= (132)

and for the second case, density is easily obtained by

Q = , (133)

where the right-hand sides of both equations are known constants. In practice, the number of

iterations at frozen chemistry will be small at the beginning of the flow computation, when the

thermodynamic state and hence chemical composition is changing rapidly. Towards conver-

gence, this number can be significantly increased, and the overall computational time reduced.
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Negative Exact

Temp. (K) 3932.45 4000.00

N2 Mass Fraction 0.803368 0.740236

02 Mass Fraction 0.079529 0.042519

NO Mass Fraction -0.076377 0.055901

N Mass Fraction -0.000622 0.000761

O Mass Fraction 0.194102 0.160582

Table 1 Example of multiple solution.
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SECTION V

BLACK BOX RESULTS

Numerical results were obtained for each of the chemistry models detailed in Section [H us-

ing different densities over varying ranges of temperature. Unless otherwise stated, all calcula-

tions were performed using the Vibrational Model and Consistent K,.

1. AIR MODELS

In the following, equilibrium compositions for air were computed at densities O = 1.293,

1.293 10-2 and 1.293 10-4 kg/M 3 , where the first value corresponds to standard conditions.

The compositions computed using 5-Species Air Model, plotted as mole percentage versus tem-

perature, are shown in Figure 1, Figure 2 and Figure 3 for the three respective densities. Of im-

portance is the result that as density decreases, so does the temperature at which the mixture has

totally dissociated into monatomic components. For the density Q = 1.293 kg/m 3 , the mixture

still contains diatomic species up to 16,000 K, as seen in Figure 1. The equilibrium composition

for density @ = 1.293 10-2 kg/m 3, as seen in Figure 2, becomes almost completely monatom-

ic at around 14,000 K. Also, the mole percentage of NO peaks at around 3,000 K, which is con-

sistent with the findings of other researchers [Reference 23]. In Figure 3, where the composition

for density ( = 1.293 10-4 kg/m 3 is plotted, it can be sern that the temperature at which the

mixture is virtually dissociated has dropped to around 9,000 K.

The variation of temperature versus internal energy, computed using 5-Species Air Model,

is shown in Figure 4 for the three density values given. The effect of chemical reactions are

readily apparent in this figure. For an ideal gas, temperature would be a linear function of inter-

nal energy and independent of density.

The variation of isentropic index versus temperature is given in Figure 5 for the same three

densities and same air model. At low temperatures, the index starts at its diatomic limit of 7/5. It

then follows a series of peaks and valleys until it finally reaches its monatomic limit of 5/3.

Comparing each density curve with its corresponding composition plot given in Figure 1 through

Figure 3, it can be seen that the first valley correlates well with the point of massive 02 dissoci-

ation. The subsequent peak correlates with a peak in 0 production. The second valley correlates

with the point of massive N2 dissociation. It can be inferred from Figure 5 that it may be hazard-

ous to assume a constant "gamma" in the derivation of flux-split algorithms. The variation of

speed of sound versus temperature is shown in Figure 6. Again, deviation from ideal behavior is

noticeable, as this plot would reduce to a single parabolic shape for an ideal gas.
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Equilibrium compositions for density Q = 1.293 10-2 kg/m 3 are shown in

Figure 7 through Figure 10 for the 7, 9, 11 and 13-Species Air Model respectively. The 7-Spe-

cies Air Model solution given in Figure 7 is nearly identical to Figure 2 except for the two addi-

tional species NO + and e -. The mole percent for these two species is identical due to preserva-

tion of electrical charge. However, it should be noted that the physical behavior of the 7-Species

mixture is inaccurate, since at the high end of the temperature range the mixture should be en-

tirely monatomic. This is because the 7-Species Air Model has no mechanism for the production

of atomic ions, specifically N + and O +. A more noticeable change, other than the addition of

more species, occurs in the more complex models which incorporate reactions describing the

production of atomic ions. At the higher temperatures, the mixture is composed entirely of mo-

natomic species, as can be seen in Figure 8 through Figure 10. Furthermore, these mixtures are

becoming increasingly more ionized.

Plots of mole percentage versus temperature for the 17-Species Air Model and the three
densities given previously are depicted in Figure 11 , Figure 12 and Figure 13. Again the depen-

dence of the level of dissociation on density is readily apparent. These plots are in excellent

agreement with similar results obtained by Hilsenrath, Klein and Wooley [Reference 24], where

the equilibrium computations were performed using 27 species.

The variation of temperature versus internal energy is given in Figure 14 for the three densi-

ties and 17-Species Air Model. The curves are nearly identical to those computed using 5-Spe-
cies Air Model, shown in Figure 4, up to an internal energy e = 40 MJ/kg. At this value for inter-

nal energy the curves for the 5-Species Air Model reach their limiting linear functional form,

since the composition is fairly constant past that point. However, for the 17-Species Air Model,

this limit is not reached until around 200 MJ/kg. The reason for this difference is that the more

complex air model incorporates charged species, where internal energy is used in the ionization

reactions.

Plots of the isentropic index versus temperature for the same three values of density and

17-Species Air Model are given in Figure 15. As in the results for 5-Species Air Model, the

isentropic index starts at its diatomic limit and follows a series of peaks and valleys until it

reaches its monatomic limit. Again, when compared to the corresponding plots of composition

given by Figure 11 through Figure 13, the first two valleys and first peak correlate in a similar

manner as the results for the 5-Species Air Model. Additionally, the second peak correlates with

the peak in N production and the subsequent valley correlates nicely with the beginning of mas-
sive ionization. The variation of speed of sound versus temperature for the 17-Species Air Mod-

el is shown in Figure 16.
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Comparisons of the air models are made in Figure 17 and Figuie 18 for density

1.293 10-2 kg/r 3 . The variation of temperature versus internal energy for all the air

models is given in Figure 17. Here the effects of ionization incorporated in the more complex

models, 9, 11, 13 and 17-Species Air Model, are readily apparent. The variation of isentropic

index versus temperature is shown in Figure 18. The inaccuracy of the 7-Species Air Model is

very apparent in this plot, where at high temperatures the isentropic index tends towards the di-

atomic limit and then drops off. Moreover, it should be pointed out that for the simpler air mod-

els the diatomic limit is reached at a much lower temperature than for the more complex models.

It is important to point out that the results from all the chemistry models are the same up to

a temperature corresponding to the onset of ionization, which for the density

Q = 1.293 10-2 kg/m 3 results shown is about 8,000 K. At higher temperatures, where ioniza-

tion effects are important, the 9, 11, 13 and 17-Species Air Models are in perfect agreement.

Thus for high-speed, high-temperature air flow simulations, there should be no loss in accuracy

through the use of the simpler 9-Species Air Model instead of the computationally more expen-

sive 17-Species Air Model. Moreover, if the maximum temperature of the flow field is less than

the temperature at which ionization occurs, then further computational savings can be realized

through the use of the simple 5-Species Air Model without any appreciable loss in accuracy.

2. COMBUSTION MODELS

The equilibrium composition obtained for Hydrogen-Air Combustion Model is given in

Figure 19 for a densiA ty Q = 1.324 10- 3 kg/m 3. The equivalence ratio D = 0.29841 corre-

sponds to a lean mixture. The accuracy of this model is questionable, since at the higher temper-

atures oxygen should be dissociated.

The variation of temperature versus internal energy for Hydrogen-Air Combustion Model is

shown in Figure 20 for densities of Q = 1.324 10-1, 1.324 10-3 and 1.324 10-i kg/m 3. The
variation of speed of sound versus temperature is given in Figure 21 for the same three densities.

It can be seen that the thermodynamic properties of the mixture are not strongly affected by den-

sity for this combustion model. This is probably due to the high concentration of inert nitrogen

in the mixture.

Equilibrium compositions computed for Hydrogen-Oxygen Combustion Model are shown

in Figure 22 and Figure 23 for densities Q = 2.8306 and 2.8306 10-2 kg/m 3, and a mixture

ratio of 6:1. This is the same composition used in the space shuttle main engine (SSME) nozzle

studies of Wang and Chen [Reference 13]. At low temperatures, water and excess diatomic hy-

drogen are the prevalent species, while at higher temperatures, where the dissociation reactions
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are predominant, atomic hydrogen and oxygen are noticeable. This figure illustrates the depen-

dence on temperature as to whether the mixture is fully or partially combusted.

The variation of temperature versus internal energy for the Hydrogen-Oxygen Combustion

Model is shown in Figure 24 for the two densities given above. A much stronger dependence on

density is registered for this model as opposed to the previous model. The variation of isentropic

index versus temperature is given in Figure 25 for the same two densities and same combustion

model. When compared to the composition plots of Figure 22 and Figure 23, the minimas of the

isentropic index curves correlate with the points where oxygen is beginning to massively dissoci-

ate. The composition of both mixtures are fairly constant up to a temperature around 3,000 K.

This is reflected in the plot of speed of sound versus temperature, given in Figure 26, where the

curves for the two densities begin to deviate at this temperature.

The equilibrium composition obtained using Hydrocarbon Combustion Model for density

Q = 3.295 10-2 kg/m 3 is shown in Figure 27, where the equivalence ratio 4' = 1.2 corre-

sponds to a fuel-rich mixture. This is the same composition studied by Meintjes and Morgan

[Reference 4]. Again, the dependence of the combustion process from the temperature is readily

apparent.

The variation of temperature with internal energy for the Hydrocarbon Combustion Model

is shown in Figure 28, where three curves are plotted for densities C = 3.295, 3.295 10-2 and

3.295 10-4 kg/m 3. Similar to the comparisons made earlier, the valley in the density

Q = 3.295 10 -2 kg/m 3 curve, in the plot of isentropic index versus temperature shown in Fig-

ure 29, is seen to correlate well to the point of massive dissociation of 02 seen in Figure 27. The

variation of speed of sound is given in Figure 30 for the same three densities.

3. PLASMA MODEL

Equilibrium compositions obtained from the Argon Plasma Model are plotted in Figure 31

for the densities Q = 1.303 10-s, 1.303 10-3 and 1.303 10-1 kg/r 3 , proceeding from left

to right. Plots of the variation of temperature versus internal energy, isentropic index versus tem-

perature and speed of sound versus temperature are given in Figure 32, Figure 33 and Figure 34

respectively, for the same three values of density. A strong dependence on density is registered in

all the plots.

4. TRANSPORT PROPERTIES

Comparisons of the transport property evaluation methods were made using the 11-Species

Air Model under a constant pressure of one atmosphere. Either of the two models used to com-
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pute the species transport property, Sutherland Model or Gupta Model, can be combined with

either of the mixture rules, Wilke Rule or Gupta Rule, to give the value for the mixture. The

variation of the mixture viscosity versus temperature is given in Figure 35 for each of four per-
mutations possible, while the variation of mixture thermal conductivity is given in Figure 36. In

both plots the values have been normalized using the appropriate Sutherland's Law for air as a

homogeneous mixture. There is relatively little difference between the models at low tempera-
tures. However, at the higher temperatures, the Gupta-Gupta technique, which incorporates col-
lision cross sections, could prove to be more accurate.

5. ROBUSTNESS

The problem of multiple solutions to the equilibrium equations and the limiters developed to
correct this problem were discussed in Section IV. Five different strategies were developed, in-

corporating the limiters in various combinations in order to improve the robustness of the Black
Box. These correction strategies were tested using Ideal Dissociating Oxygen Model as well as
the 5 and 11-Species Air Models. Initial guesses for species densities and temperature for each

cell were selected with a certain arbitrariness and all calculations were performed driving the re-

sidual to machine zero, using double byte arithmetic.

In the following, Strategy I will refer to the baseline solution, where no limiters were used.

Strategy 2 uses the Catastrophic Limiter for density correction and the Relative Limiter for tem-
perature correction. The Relative Limiter was used for both density and temperature correction

in Strategy 3. Strategy 4 uses Absolute Newton Limiter for both density and temperature correc-

tion. Strategy 5 is similar, except temperature correction is performed using Relative Limiter.

Preliminary numerical experiments were performed on the value of 0 used in Equation (122)

and the value A = 1/3 was found to be the optimal choice.

a. OXYGEN DISSOCIATION RESULTS

The Ideal Dissociating Oxygen Model was utilized to evaluate the equilibrium composition

at three different thermodynamic states, where each is characterized by a density

Q = 3.0 10-4 kg/m 3 . Case I corresponds to heavy dissociation and internal ea-rgy
e = 8.14398 MJ/kg. The equilibrium temperature and degree of dissociation are

T = 2775.15 K and a = 0.386874, respectively. Case 2 corresponds to light dissociation and

internal energy e = 3.0758 MJ/kg, where the equilibrium temperature and degree of dissoci-

ation are T = 2377.85 K and a = 0.079069, respectively. Case 3 corresponds to almost total

dissociation and internal energy e = 17.0 MJ/kg. The equilibrium temperature and degree of

dissociation are T = 3392.0 K and a = 0.928500, respectively.
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The results of the robustness study for the Ideal Dissociating Oxygen Model are presented in

Table 2 and Table 3 for the Mass Constraint Technique and Degree of Ad', arceme.z Technique,

respectively. For each category, the percentage of results that are correct, blowup, wrong and ex

ceed the maximum number of iterations (50) are given, and are denoted in the table by %C, %B,

%W and %M, respectively. A total of 10,100 computations were perforw, tor each case, strate-

gy and technique. The initial guesses for temperature and degree of dissociation were varied in

the range 100 K - T < 10,000 K and 0 r a < 1 in equal increments of 100 K for the tem-

perature and 0.01 for the degree of dissociation. It should be apparent that Case 2 is the most dif-

ficult case of the three since it has the lowest percentage of solutions that are correct when no

corrections are made. Strategy 2 is completely successful at guiding convergence to the correct

solution. Strategies 4 and 5 work perfectly with the Mass Constraint Technique, but their perfor-

mance with the Degree of Advancement is worse than no correction at all. This was expected,

since the Degree of Advancement does not enforce the mass constraints directly. The result is

solutions where density is not conserved. Strategy 3 is not quite as successful as Strategy 2. The

limit on the relative change per iteration slows convergence down, especially for particularly

poor initial estimates for species densities. Hence, Strategy 3 shows an increase in computations

where the maximum number of iterations have been exceeded, as is seen in the table. Also

shown in Table 2 is the average number of iterations for the computations converging to the cor-

rect solution, which rarely exceeds 12. As was expected Strategy 3 appears to retard conver-

gence. Strategies 2 and 5 seem to be the most efficient methods.

b. AIR DISSOCIATION AND IONIZATION RESULTS

In a similar fashion, robustness studies were performed using the 5 and 11-Species Air

Models. Three cases were used, characterized by a density ( = 1.293 10-2 kg/m 3. Case 1 cor-

responds to massive oxygen dissociation and internal energy e = 6.94 MJ/kg, where the equi-

librium temperature is 4000 K. Case 2 corresponds to a halfway complete nitrogen dissociation

and internal energy e = 26.65 MJ/kg, where the equilibrium temperature is 7000 K. Complete

dissociation of nitrogen, disappearance of NO and appearance of some charged species charac-

terize Case 3, where internal energy e - 36.621 MJ/kg, and the equilibrium temperature is

9000 K.

Initial guesses for temperature were varied in equal increments of 300 K over the range

300 K :r T :r 30,000 K. Five sets of initial compositions were used: the first three are the

equilibrium compositions corresponding to the three cases above; and the final two compositions.

correspond to totally undissociated and dissociated nitrogen and oxygen states, respectively.

These initial compositions are given in two sets denoted Set 1 and Set 2, comprising the first
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three compositions and all five compositions, respectively. Set 1 has a total of 300 computations,

while Set 2 encompasses all 500 computations. In light of the Ideal Dissociating Oxygen results,

computations were performed using only Strategies 2 and 5 along with the baseline Strategy 1.

Results for 5-Species Air Model are shown in Table 4 and Table 5 for the Mass Constraint
Technique and Degree of Advancement Technique, respectively. Notably apparent is the lack of

robustness when no correction strategies are implemented, especially for Case 1. Strategy 2 pro-

vides a significant improvement over the baseline, particularly when used with the Degree of
Advancement Technique. Strategy 5 is completely successful when used in conjunction with the

Mass Constraint Technique. However, as was already seen in the oxygen dissociation results, it is

ill-suited for use with the Degree of Advancement Technique.

Results obtained using 11-Species Air Model are given in Table 6 and Table 7 for the Mass
Constraint Technique and Degree of Advancement Technique, respectively, and follow the same

trend as the previous results for the 5-Species Air Model. However, the overall percentage of
correct results has dropped slightly. This is due to the inclusion of charged species. It should be

pointed out that the computations presented in these robustness studies were performed with

poor initial estimates in order to test the robustness of the Black Box. These extreme situations

should rarely occur when the Black Box is utilized in a flow solver, where good estimates are

usually available. Again, the average number of iterations rarely exceeds 16.

6. EFFICIENCY

Comparative timing runs were made on a Cray XMP for the Mass Constraint Technique and
Degree of Advancement Technique, using the Ideal Dissociating Oxygen Model, and 5, 11 and

17-Species Air Models. The Degree of Advancement Technique outperformed the Mass

Constraint Technique: the CPU times per iteration per computational cell were 0.0355, 0.141,

0.98 and 2.72 msec, respectively for the Degree of Advancement Technique, and were 0.0533,

0.215, 1.20 and 3.25 msec, respectively for the Mass Constraint Technique. Thus, the increase in

the complexity of the Jacobians is less time consuming than the computational savings afforded

by the reduced set of equations.

Numerical experiments were performed in order to test the efficiency of the vector reduction
implementation. The 5-Species Air Model was employed for the computation of the equilibrium

state corresponding to complete dissociation of oxygen, with density Q = 1.293 10- 2 kg/M 3

and internal energy e = 6.614 MJ/kg. The equilibrium temperature is 3996.0 K. The initial
problem was composed of 1000 cells in which the composition is given by the equilibrium solu-

tion, and only the initial estimates for temperature are perturbed. Two cases were studied. The

first case corresponds to a uniform unconverged field, where all the unconverged cells start with

41



the same initial conditions and hence will have the same convergence rate. The second case uti-

lizes a variable unconverged field, in which the unconverged cells start at different initial values

for temperature, with convergence varying from 1 to 20 iterations. For each case, five computa-

tions were performed for fields in which the percentage of initially converged cells are 0, 33, 50,

67, 90 and 99 percent. All computations were performed on a Cray XMP, and the cpu times were

recorded.

The results showing the vector reduction performance appear in Figure 37, where the per-

cent reduction in computational time is given versus the percentage of initially converged cells.

The case of the uniform unconverged field represents the baseline for all the calculations. The

initial overhead of the vector reduction implementation, given for the computation for which

there are no converged cells, was found to increase the cpu time by about 6 percent. For the vari-

able unconverged field, an initial savings of 30 percent can be realized. The break even point for

the uniform unconverged case occurs when about 9 percent of the field is initially converged.

For higher percentages of initially converged cells, vector reduction produces substantial savings

in cpu time. This is especially true for the case of a variable unconverged field, which is a more

realistic model. When used in conjunction with a flow solver, in which a relatively high percent-

age of the computational cells are initially converged or nearly converged, a significant decrease

in the computational expense of the Black Box should be realized. This last statement will be

verified in the results for the flow solver.

Numerical studies were also made of the effects of freezing the Jacobian matrix utilized for

the Newton-Raphson iterations, with mixed results. Different strategies were employed, chang-

ing the residual value at which freezing was initiated and the number of frozen iterations. The

results showed that for computations starting with a good initial guess for the composition and

temperature, a freezing strategy could be useful. A more detailed discussion is given in Cinnella

and Cox [Reference 25].
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Method 1 Method 2 Method 3 Method 4 Method 5

% C 95.98 100.00 97.15 100.00 100.00

% B 0.07 0.00 0.00 0.00 0.00

Case I % W 2.94 0.00 0.00 0.00 0.00

% M 1.01 0.00 2.85 0.00 0.00

Avg. It. 12.43 10.91 16.56 12.38 10.91

"% C 78.29 100.00 96.87 100.00 100.00

"% B 0.38 0.00 0.00 0.00 0.00

Case 2 % W 16.57 0.00 0.00 0.00 0.00

"* M 4.76 0.00 3.13 0.00 0.00

Avg. It. 12.05 10.34 15.08 11.72 12.66

"* C 100.00 100.00 100.00 100.00 100.00

" B 0.00 0.00 0.00 0.00 0.00

Care 3 % W 0.00 0.00 0.00 0.00 0.00

" M 0.00 0.00 0.00 0.00 0.00

Avg. It. 12.88 10.50 16.89 12.88 10.50

Table 2. Robustness study, Ideal Dissociating Oxygen Model, Mass Constraint Technique
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Method I Method 2 Method 3 Method 4 Method 5

% C 95.98 100.00 98.57 100.00 100.00

% B 0.07 0.00 0.00 0.00 0.00

Case 1 % W 2.94 0.00 0.00 0.00 0.00

% M 1.01 0.00 1.43 0.00 0.00

Avg. It. 12.43 10.91 15.06 12.38 10.91

% C 78.29 100.00 98.57 58.80 65.28

% B 0.38 0.00 0.00 0.00 0.00

Case 2 % W 16.57 0.00 0.00 41.20 44.72

% M 4.76 0.00 1.43 0.00 0.00

Avg. It. 12.00 10.30 15.31 8.44 9.48

% C 100.00 100.00 100.00 99.83 99.83

% B 0.00 0.00 0.00 0.00 0.00

Case 3 % W 0.00 0.00 0.00 0.17 0.17

% M 0.00 0.00 0.00 0.00 0.00

Avg. It. 12.85 10.47 13.49 12.86 10.47

Table 3. Robustness study, Ideal Dissociating Oxygen Model, Degree of Advancement
Technique
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Method 1 Method 2 Method 5

Set I Set 2 Set I Set 2 Set 1 Set 2

%C 3.33 6.00 98.67 84.00 100.00 100.00

%B 45.67 47.60 0.00 0.00 0.00 0.00

Case 1 %W 51.00 46.40 0.00 0.20 0.00 0.00

%M 0.00 0.00 1.33 15.80 0.00 0.00

Avg. It. 9.80 11.60 13.13 13.84 15.01 15.34

%C 86.33 71.20 98.00 90.80 100.00 100.00

%B 0.00 10.40 0.00 0.00 0.00 0.00

Case 2 %W 13.67 18.40 0.33 3.40 0.00 0.00

%M 0.00 0.00 1.67 5.80 0.00 0.00

Avg. It. 17.24 17.28 16.53 16.09 14.24 14.69

%C 73.67 62.00 81.00 66.20 100.00 100.00

%B 0.33 1.60 0.00 0.00 0.00 0.00

Case 3 %W 26.00 36.40 1.33 1.20 0.00 0.00

%M 0.00 0.00 17.67 33.60 0.00 0.00

Avg. It. 16.93 15.72 13.65 13.42 15.60 15.88

Table 4. Robustness study, 5-Species Air Model, Mass Constraint Technique
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Method 1 Method 2 Method 5

Set I Set 2 Set I Set 2 Set I Set 2

%C 3.33 6.00 99.00 84.20 28.67 34.80

%B 45.67 47.60 0.00 0.00 0.00 0.00

Case 1 %W 51.00 46.40 0.00 10.80 71.33 65.20

%M 0.00 0.00 1.00 5.00 0.00 0.00

Avg. It. 9.60 11.17 12.84 13.64 13.08 14.11

%C 86.33 71.20 100.00 91.40 57.67 55.20

%B 0.00 10.40 0.00 0.00 0.00 0.00

Case 2 %W 13.67 18.40 0.00 6.80 42.33 44.80

%M 0.00 0.00 0.00 1.80 0.00 0.00

Avg. It. 16.73 16.78 15.75 16.09 12.01 12.28

%C 73.67 62.00 98.33 90.00 49.00 48.40

%B 0.33 1.60 0.00 0.00 0.00 0.00

Case 3 %W 26.00 36.40 0.00 1.20 51.00 51.60

%M 0.00 0.00 1.67 8.80 0.00 0.00

Avg. It. 15.35 15.12 14.72 14.60 10.88 10.95

Table 5. Robustness study, 5-Species Air Model, Degree of Advancement Technique
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Method 1 Method 2 Method 5

Set I Set 2 Set I Set 2 Set I Set 2

%C 3.00 3.80 69.67 54.40 97.67 98.40

%B 43.67 47.00 0.00 0.00 0.00 0.00

Case 1 %W 46.00 41.00 0.33 0.80 0.00 0.00

%m 7.33 8.20 30.00 44.80 2.33 1.60

Avg. It. 9.89 14.00 15.31 17.75 18.66 20.01

%C 22.00 23.40 36.33 28.20 99.33 99.40

%B 19.00 35.60 0.00 0.00 0.00 0.00

Case 2 %W 43.67 31.00 0.00 0.00 0.00 0.00

%M 15.33 10.00 63.67 71.80 0.67 0.40

Avg. It. 16.14 16.14 12.72 15.34 15.44 17.06

%C 42.67 27.60 25.67 16.20 100.00 100.00

%B 27.67 41.00 0.00 0.00 0.00 0.00

Case 3 %W 20.33 25.20 0.00 0.40 0.00 0.00

%M 9.33 6.20 74.33 83.40 0.00 0.00

Avg. It. 14.90 15.79 15.79 16.43 16.39 17.95

Table 6. Robustness study, 11-Species Air Model, Mass Constraint Technique
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Method 1 Method 2 Method 5

Set I Set 2 Set I Set 2 Set I Set 2

%C 3.00 3.60 67.00 66.40 26.67 30.00

%B 44.00 49.40 0.00 0.00 61.00 45.40

Case 1 %W 51.00 44.40 7.00 5.00 22.33 24.60

%M 2.00 2.60 26.00 28.60 0.00 0.00

Avg. It. 10.00 13.44 17.09 20.10 14.24 18.26

%C 22.00 23.40 53.33 37.20 16.33 10.40

%B 22.00 37.40 0.00 0.00 29.00 25.60

Case 2 *W 54.00 38.00 0.00 0.60 54.67 64.00

%M 2.00 1.20 46.67 62.20 0.00 0.00

Avg. It. 14.79 16.85 14.59 16.64 10.10 10.56

%C 43.00 27.80 29.00 20.00 10.00 10.20

%B 29.33 41.00 0.00 0.00 26.00 23.40

Case 3 %W 26.67 30.40 0.00 0.00 64.00 66.40

%M 1.00 0.80 71.00 80.00 0.00 0.00

Avg. It. 13.90 14.38 11.09 13.95 9.60 11.88

Table 7. Robustness study, 11-Species Air Model, Degree of Advancement Technique
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SECTION VI

MATHEMATICAL FORMULATION: FLOW SOLVER

The governing equations for three-dimensional, compressible, viscous fluid flow (neglect-

ing body forces) for a generalized, time dependent, curvilinear coordinate system have been

presented by several authors [References 26, 27, 28]. In the following, the density of the fluid

will be denoted by Q, pressure p, total specific energy eo , thermal conductivity %C, viscosity pt

and the Cartesian velocity components will be u, v, w for the x, y, z coordinate directions, re-

spectively. The governing equations, written in strong conservation law form, read

Q +LF + +aH Fv +Gv aHv

where the dependent variable vector is

Q
Qu

Q j Qv , (135)

Qw

the inviscid flux vectors are

Qu

QuU + ý4p

F =J QvU + ýyp (136)

QwU + ýzp

QeOU + p(ýxu + ýyv + ý,w)

QV

QuV + %P

GwJ Q 14, '(137)
QwV + 'q zP

eOeV + p(?lxu + qlyv + ilzw)
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QW
QUW + .xP

H = J QVW + .yp (138)

QwW + týp

QeoW + p(txu + .yv + t..w)

the viscous flux vectors are

0
Týx

Fv =J T2 (139)

(a + uT% + vT2 + wTý

0

Gv J T12 (140)

T43

+ uT.l + vTq2 + wTq3

0
TtI

Hv = J T• (141)

Pt + uTt1 + vTt + wT3

and the Jacobian of the coordinate transformation is

J =detl 8(xy , Z) (142)

In the above, the curvilinear coordinates have been defined as
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= (x,y,z,t)

t (143)

and the contravariant velocities normnal to constant and g surfaces are defined to be

U = , + ~x +V~y W~z(144)

V = IT +Ur~ + VIY +Wqz(145)

W = z + tx +vty Wtz(146)

The heat flux and shear stress tems of the viscous flux vectors, given in Equations (139)-(141),

are

=I~ qxlx + qyly + qzilz, T42 = XX+"AY+"A

TO -xx?1x + TCXYTIY + rxzlz , Tt1 = 'EAt + Txt + xi4 2z,

Tiq3  Txzllx + %yzily + rz'~j To = xt + %4 + Kiz'z, (147)

where

MW + qBW +tw)I

3[ aý )-1 atU~ at aj a

(z Bw + 'A-+tw

r2 p[2( zw + %2-w + tzW) tx~ +u + tx B

ýIV+ tJ3AV" + t V)
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(3u du + u + v +)+(Lv + Lv

aq au aw aw (3w

TYZ 11 Z-v v + dlý v + zL + 3Yw + 3W t3w-
1 yz L [ ~i -+t,-•.-- ) I

qx-= ý x + llx% + .xT),

qy-= - y (( T +lya + .y3 )

qz = %( z-l + TiA-I + tzý- )•(18
g a~q at(148)

In the above, the additional assumption that the flowfield is considered to be a homogeneous

mixture has been made, hence diffusion effects are neglected. The modeling of diffusion would

require writing additional partial differential equations describing the conservation of mass for

each of the elemental species comprising the mixture [Reference 12].

The continuity equation is represented by the first row in Equations (134) - (141), whereas
rows two through four correspond to the momentum equations and the last row is the energy

equation. The entire -et of equations is commonly referred to as the Navier-Stokes equations,

although incorrectly so, since this name originally defined only the momentum equations. How-

ever, the author will adhere to the accepted practice. The system of equations is closed by the
"Black Box", which provides pressure, temperature, viscosity and thermal conductivity as func-

tions of density and internal energy.

1. NONDIMENSIONALIZATION

The dimensional quantities in the above equations are scaled using the following relations

- y z = 1- , = , W=war ar

p Qazr e.

T T = T-' (149)

where the bar denotes the nondimensional quantities, and L, (r, Tr, and ar are the reference
length, density, temperature and speed of sound, respectively. The reference viscosity t~r and
thermal conductivity 9Gr used in the previous relations are
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Pr = QrarL,

%Jr = L~rRr, (150)

where the reference gas constant has been introduced, and is defined by the relation

ar2 = RrTr, (151)

Normally, viscosity and thermal conductivity are scaled by introducing the Reynolds and Prandtl

numbers, where perfect gas relations are used to define the latter [References 26, 27, 28]]. This

is not practical for real gas flows. After dropping the bar over the scaled variables, the resulting
set of nondimensional Navier-Stokes equations will appear identical to Equations (134) - (141).

2. THIN-LAYER APPROXIMATION

Solution of the complete Navier-Stokes equations is both computationally expensive and

memory intensive. This is due to the complexity of the viscous terms and the large number of

computational volumes that would be required to resolve the mixed second derivatives in those
terms. Boundary-layer simplifications, while reducing the complexity of the Navier-Stokes

equations, are not applicable to flows where there is a strong interaction between the inviscid

and boundary-layer regions (Reference 28].

The concept of the thin-layer approximation, where the viscous terms comprising deriva-

tives in directions parallel to the body are neglected, not only provides a reduction in the com-
plexity of the equations but allows for the determination of mildly separated and reverse flow

regions [Reference 29]. The neglected terms are small in comparison with the other viscous

terms containing derivatives normal to the body surface, and this makes the procedure justifi-

able. Moreover, adequate resolution of these terms is difficult to achieve unless grids which are
densely packed in a direction parallel to the body surface are employed, and this is beyond the

current capability of practical viscous calculations.

Neglecting derivatives in the t-direction, as an example, the thin-layer Navier-Stokes

(TLNS) equations will read

aQ + F + jG+ H = Gv + Hv(12•'+••+-+'•- -• +•)--- ,(152)

where the dependent variable and invisc'd flux vectors remain the same, as given by Equations

(135) - (138). However, the viscous flux vectors G. and H, are simplified. They can be written

in the general form
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0

Tkl

S, = J Tk2 (153)

Tk3

[ý + UTkI + VTk2 + WTk3j

where S, denotes the viscous flux vector in the direction k. The viscous shear stress and heat

flux terms are now given by

Tkl " 'xxkx + Txyky + ZxzCZ,

Tk2 =xykx + Cyyky + ryz,

(154)
Tk3 -- zxzkx + ry~zky + -zzkz,

=k qxkx + qyky + qzkz

where

CTxx = [ t2 k y - k - kz aw
3 aX A9 aw

= 2L [2 k yv - kyyu - k-aw
3 A8 Ak Ak-z =v ZI za xu kywa

S= p [2 k au - k - k y

A~ ACxy = [ ky- + kx ]

•= jp [k.• + k1~-]

qxy = +G kkxa]

qy = 6ka

and

aT

z = % kz~k .(155)

In the following, all the viscous solutions will be obtained by numerical solutions of the TLNS

equations.
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SECTION VII

NUMERICAL FORMULATION: FLOW SOLVER

1. FINITE-VOLUME DISCRETIZATION

The governing fluid dynamic equations, which were presented in Section VI, can be reduced

to a set of solvable algebraic equations using the finite-volume technique, where the computa-

tional domain is discretized by small, but finite, control volumes or computational cells.

Integrating Equation (152) over the unit computational cell (A =Aqi =Ag.= 1) and noting

that the dependent variables become cell-averaged values, the following discretized form of the
governing equations is obtained

aQ
-a-- + i(F) + 6j(G - Gv) + 8k(H -- Hv) = 0, (156)

where the central difference operator

'51( ) = ( )I+!½- ( )1-!' (157)

has been introduced, and indices i, j, k correspond to the directions ý, -I, g, respectively.

2. IMPLICIT ALGORITHM

Considering for a moment only the inviscid fluxes of Equation (156), a fully implicit for-
mulation can be written as

AQ n = Qn+l - Qn &1 2:,&,"6 Sn+1 (158)

where n represents the time level and Az = ,n + I - Tn is the time step. In the above, the
summation is over all three flux vectors, where S corresponds to F, G and H, and I corresponds

to i, j and k, respectively.

The inviscid fluxes are nonlinear functions of Q and can be linearized in the manner used by
Beam and Wanning [Reference 30], and Briley and McDonald [Reference 31], as follows

Sn+I = Sn + -(Qn) AQn, (159)

where
aSQn)

g(Qf) - aQ (160)
aQ

Applying this linearization to Equation (158), the Euler-Implicit difference formulation is ob-

tained
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I + tYs 1An A ,Sn, (161)

which is first-order accurate in time. The dot indicates that AQn is included in the operation of

Similar considerations can be applied to the viscous flux vectors, resulting in the following

fully-implicit algorithm for the TLNS equations

{1 + A T [ -+ 8j(B - B v) -+ 8k(C - C v) ]AQ n (162)

= - A.C[Sip)n + 8(G - GI)n + Ik(H -v

where the Jacobians of the inviscid and viscous fluxes are

A=aFaQ'

B aG aH
a-Q' C aQ (163)

aG~v allv

Bv C 3Q.

3. FLUX-SPLIT ALGORITHMS

The governing equations given in Equation (134) are hyperbolic in nature and consequently

information is propagated only in certain characteristic directions. Numerical techniques, where-
by the fluxes are discretized in a manner to allow information to propagate in the "correct"
direction, are known as upwind methods. The two most popular categories of upwind methods

are flux-vector splitting and flux-difference splitting. Both of these techniques involve the
discretization of the inviscid flux vector in one space dimension, and extensions to three dimen-
sions are accomplished by considering three separate one-dimensional problems.

The flux-vector split scheme that is used in this study is of the Steger-Warming type. Origi-
nally developed for perfect gases [Reference 321, it has been extended to flows in chemical equi-

librium by Vinokur and Montagn6 [Reference 33]. The basic premise behind the scheme is that

flux vectors are split and discretized in directions corresponding to the sign of the propagating
wave speeds.

The flux--difference split scheme that is employed is a newly derived approximate Riemann
solver for arbitrary gas mixtures. It is based on the perfect gas version developed by Roe [Refer-•

ence 34]. Essentially, this scheme involves the solution of local Riemann problems at each cell
face, where a discontinuity, created by differences between the left and Tight states, is assumed to
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exist. In contrast to the flux-vector split scheme, the inviscid flux vector is not split but recon-

structed from the left and right states.

The inviscid flux Jacobians are analytically derived from the Steger-Warming split fluxes in

a manner similar to the work of Belk [Reference 351, with the exception that the present for-

mulation is based on flows in chemical equilibrium. Both Steger-Warming and Roe fluxes can

be used to determine the right hand side of the discretized governing equations, where for hyper-

sonic flows the former is more robust and the latter is more accurate [Reference 36].

a. EIGENVALUES AND EIGENVECTORS

Using the generic formulation, where S is F, G or H when k is i, i1, <, the inviscid flux vec-

tors can be written as

QIk

Qu~k + Pkx

S = JIVkI Qv~k + pkY , (164)

QWIWk + pkz

(hoo k - pkt

where kx, ky, kz, and kt are the normalized metrics and are given by

IVkI= k--l- 2

In the above, Ok is the relative contravariant velocity with respect to direction k, and is defined

to be the sum of the absolute contravariant velocity 0 k and the velocity due to the time rate of

change of the curvilinear coordinate I as follows

Ok =- k + kt Ok =•ukx +•vky + wkz. (165)

The Jacobian matrices of the inviscid flux vectors, as well as the eigenvalues and eigenvec-

tors, have been determined in the manner of the perfect gas formulations developed by Whitfield

and Janus (Reference 371, with extensions to chemical equilibrium made in this work. The de-

tails of this determination are given in Appendix B. In summary, the eigenvalues are
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k 2  k = JIVkIRk

k- JlVl( Pk + a ), (166)

and the right and left eigenvectors are given by Equations (B.19) and (B.20), respectively. In the
relations for the eigenvectors, real gas effects are accounted for in the term

V = a2 - h(y- -1), (167)

where y was defined in Equation (29). It is interesting to point out that for a perfect gas, = ,
i is identically zero, and the eigenvectors will identically reduce to their perfect gas counterpart.

b. STEGER-WARMING FLUX-VECTOR SPLIT

The Steger-Warming flux-vector split scheme for a perfect gas utilizes the homogeneity
property to split the fluxes as follows

3 3

S = I t S' ,(168)
i ---- i ---

where Si corresponds to the positive and negative contributions of the three distinct eigenva-

lues to the Jacobian matrix 9. Liou, Van Leer and Shuen [Reference 5] have shown that the flux
vector for a real gas no longer possesses the homogeneous property and in fact is composed of

homogeneous and nonhomogeneous contributions

S = Sh + S' (169)

They proposed the following pseudo splitting for the flux vector

S = = S1 +is, (170)

where the homogeneous contributions are split according to the "standard" Steger-Warming type
scheme and central differences are used for the nonhomogeneous contributions. Alternatively,
Vinokur and Montagn6 [Reference 33] have shown that the split flux scheme derived using the
homogeneity property is just one solution of an entire family of one-parameter flux-vector split-
tings. The scheme they proposed is based on "gamma" being defined as the isentropic index. The
final result is a generalized formulation of the Steger-Warming flux-vector splitting for an arbi-
trary gas. The latter method is utilized in this study due to the simplicity of the formulation.

The split fluxes, for the generalized Steger-Warming flux-vector split formulation devel-
oped by Vinokur and Montagn6 [Reference 33], are given by
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Q

K± QW

Q Q
Q(u + akx) Q(u - akx)

-1Q(v + aky) X4k(±) K± .. Q(v - aky) k~(*
K• 2 (W+2rkz) k 2 Q(w - akz) k

Q(ho + aek) Q(ho - a0k) (171)

where

k 2

X - JVU(5k + a) " 15 + a'
2

X5() =-a)± k-a (172)
k2

In the above, r is the isentropic index defined by Equation (28). Similarly to what has been seen

for the eigenvecton, the above formulas will reduce to the perfect gas formulation, when r - y.

As was discussed previously, the inviscid flux Jacobiam are constructed from the analytical

differentiation of the split flux vectoi in the manner used by Belk [Reference 35]. The details of

the differentiation as well as the resulting components of the Jacobian matrices are given in Ap-

pendix C. The components of the Jacobians contain derivatives of the isentropic index, which is

a nonlinear function of density and teneaur. In the present study, these derivatives are ne-

glected.

Discretization of the iviscid flux Jacobians at cell face I + 1/2 is implemented as follows

[k AQ] +1 = [g AQ]1j+ = Vq+1 AQ 1 + +j AQI+I " (173)

As with the split fluxes, the Jacobians of the split fluxes can be shown to reduce to their perfect

gas formulation.
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c. APPROXIMATE RIEMANN SOLVER

The flux-difference-split algorithm used is based on the scheme developed for perfect

gases by Roe [Reference 38]. It involves the solution of local Riemann problems at each cell in-

terface, where a left state (-)I and a right state ()r are defined by extrapolation of the cell-cen-

tered values to the left and right, respectively.

Development of an approximate Riemann solver hinges on the determination of appropriate
AAA

averages for the eigenvalues ki, right eigenvectors ri and wave strengths ai such that the follow-

ing jump conditions are satisfied

5 5

EQ] = i i IS] i ri, (174)
i=1i i=1i

where the cell interface states need not be close and thus [Q] is arbitrary. In the above, the jump

operator is defined as the difference or jump in values between the right and left states,

R( )] = ()r - ("A. The averaged eigenvalues will read
A A A A

X1 = X = X3 = J1Vldlk,
A A A

).4 = JlVld( Ok + a), (175)
A A A

%5 = J'Vkl( Pk- a-

where the directional subscript k has been dropped for clarity. The averaged eigenvectors will

read

6ix

A A A

avk~x + Q.

A Aavk

rt2k -- '--
A 2+A A•

awky + Aix

y( -- A 2/( - 1)) + A('$rx- iliI•
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aiz
AA Aj

a&cz + Qky
A A A

A avkz - 6kx
r3 A-awkz

A A 2, AcL•kuo 1- a2/(y - 1)) + &(O(ky vkx)

1

Y4 5 = a•A± (176)

A 
AA' za6

and the wave strengths read

A kx/ 1pr]i01 = I -] + i xv l - kIw1,

a ~ A2

A k( 1 1

A kz]~~1w1

S"-a / (177)

In the above, the hat A denotes averaged terms. Determination of these algebraic averages is the
key step in the development of an approximate Riemann solver. Abgrall [Reference 61 pointed
out that there are multiple solutions to the system given in Equation (174) and hence the aver-
ages are not unique, as is apparent by the variety of values published in the literature (References
5-9]. The approach taken in this work is similar to that of Abgrall, however the averages devel-
oped here are for an arbitrary chemical composition. The primary difference between the present
method and others is in the determination of the pressure derivative averages, where relatively
complex formulas are used by Vinokur (Reference 7] and Glaister (Reference 8]. Grossman and
Walters (Reference 9] use an approximate algorithm which is valid for near isentropic flows.
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The present formulation utilizes averages of the ratio of enthalpy and internal energy derivatives

7and isentropic index r, which can be used to construct averages for the pressure derivatives.

In the following, the standard Roe average, denoted by Ao, will be given as follows

.= F0" + F(178)
A A

and Q is given by the standard geometric average, ()= 4]•L:r. The averages are obtained through

the solution of Equation (174). The full derivation of the Roe averaged variables for the approxi-

mate Riemann solver is given in Appendix D. The averages for all Cartesian and contravariant
A A

velocity vectors are found to be the standard Roe averages; i.e. u = S(u) and Ok = t(0k). TO-
A

tal enthalpy is given in the same manner, h. = •(h 0 ). The speed of sound a will read

A2 q A

a + 2 - iei - , (179)

where

A2 A2 A2 A 2
q =u +V +w

A NA A R TAQ a )y -(-R A) ] ,

N (180)

^l+ i=l

i-I izl

A A

In the preceding relations, the mixture gas constant 1A, temperature T", species internal energy e-i,

A =

and species mass fractions Yi, are all defined using the standard Roe average as follows
A A

•(R), T •o() , i -- f(eiv) , Y (Y) 11

and the barred terms, specifically the species specific heats at constant volume and mass fraction
derivatives, are taken as integral averages. The simplest method of evaluating these integral av-
eragesis to use the trapezoidal rule, which results in the following arithmetc averages
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vi =-c(T.) + cv.(T) ]

aQ 2- •- aQ a L3

(ET + -½i ),/. r/] (182)

Again, the Roe averages given above can be shown to reduce to their perfect gas formulations.

Implementation of the approximate Riemarm solver follows the methodology of Whitfield,

Janus and Simpson [Reference 39], where the first-order flux at ceh face 1 + 1/2 is computed

from the following

5 A

5+1iii 2 (183)
2 2 2j=1

where

S1 = S(Q1) , Sr = S(QI+1 ) (184)

Higher-order spatial accuracy is achieved using the flux interpolation approach, where higher-

order terms, involving the averaged eigenvalues, right eigenvectors and wave strengths, given in

Equations (175) - (177), are added to the first-order flux given above [Reference 39].

4. MODIFIED TWO-PASS

The discretized equations, Equation (156), are advanced in time using the modified two-

pass factorization developed by Whitfield [Reference 43], which is a basic modification of the

standard two-pass scheme. Assuming that the viscous flux Jacobians can be split into positive

and, negative contributions, Equation (162) car. be written as

(I + A'6 1M+ . + A'6 1M- ")AQn = - AZRn (185)

where

6 =M+ = 61A+ + -j(B+ - B+) + 6k(C+ - C+), (186)

6M = -iA 6 j(B- - B-) + -- k(C- - C;), (187)

and ArRn represents the entire RHS of Equation (162). After expanding and manipulating Equa-

tion (185), the result can be written in the following factored form
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(I - D -'M+_l)(I + D_'M-I)AQn = - DF-R , (188)

where

D= •+ M+ + M .(189)

The above equation can be solved in the following two steps

(Di - M )AQ*- - R ,

(D1 + M=.)AQn - D1 AQ* (190)

using an efficient LU decomposition.

5. VISCOUS FLUXES

Computation of the viscous fluxes follows the methodology of Chen [Reference 28], with
the Black Box providing the necessary transport and thermodynamic properties in place of the

perfect gas relations. However, Chen [Reference 28] and others treat the viscous terms explicitly,
since implicit treatment using a characteristic-based splitting is not possible. In the following,

the method used to split the viscous fluxes, in a manner that allows implicit treatment of these

terms and preserves the efficiency of the existing LU algorithm, will be discussed. Also, a brief

discussion will be given as to the modeling of turbulent flows.

a. VISCOUS FLUX DISCRETIZATION

The generic viscous flux vector given in Equation (153) can be rewritten as

0
11 u + kxV*

A 3X

av
S-jIAM2  Tk 3 (191)

aw + Eiv"
J -G • + 1

S+ 3

where

q 2 = u2 + v2 + w 2 ,

- au - av -aw (192)
V = kx- + ky" + kz8

83



A symbolic representation of the terms comprising the viscous flux at face 1 + 1/2 can be given

as follows

[SV(Q)]l+= -- (0)1+1 LrFa+m (193)

In the above, the flux is divided into derivative terms( * )and all others ( 0 ), where the latter

comprises transport properties, p and %, and metric terms ki- The derivatives are discretized

using central differences as follows

( (*)I+I - (*)I (194)

"8k 2

All other terms are evaluated as averages

(0)i + (0)l (195)
2+(195)

with the exception of the metric terms, which are discretized in the following manner

( Jl xk, )1+1
IAMd( k; ) - 1 ) 2 (196)

where J is the Jacobian of the coordinate transformation.

b. VISCOUS JACOBIANS

As was stated previously, the viscous fluxes can be linearized in a similar fashion as the in-

viscid fluxes

Sn+= = Sn + 9V(Qa) AQ 0 , (197)

where the viscous Jacobians are given as
asv(Qn)

S"(Q") = aQ (198)

Dropping the temporal superscript and recalling the notation used in the previous subsection, the

viscous flux correction at cell face I + 1/2 can be written in the following manner
as=(o) AQ = [(*) 1 + (O) [+)-L 1m 1AQ,+ . (199)

[asQ]Q I aQ 7k A I--JT J
2 2

Using the same differencing techniques given above and recalling the upwind discretization of

the inviscid fluxes, Equation (199) can be discretized as follows
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[aS (Q) 1 AQ1  + & = + + S&Ql+1 (200)[ 1 2+

where

9 {l *I ]j r(), o)] J (201)

i[a•--]j (o)+½[-].-} (202)

This is the same type of discretization used by Cinnella (Reference 40] in the development of the

production code GASP (General Aerodynamic Simulation Program). The use of Equation (198)

allows for the implicit treatment of the viscous fluxes while maintaining the efficiency of the LU

decomposition. The discretized components of the viscous Jacobians are given in Appendix E.

c. TURBULENCE MODELING

The TLNS equations are applicable to both laminar and turbulent flows, provided that the

turbulence model is based on eddy viscosity. The total viscosity and thermal conductivity are

given as the sum of the laminar and turbulent contributions, as follows

t&= 1L + lt, (203)

% =% + %t (204)

where subscripts I and t denote the laminar and turbulent values, respectively. The laminar vis-

cosity and thermal conductivity are provided by the Black Box.

The turbulent viscosity is determined using the Baldwin and Lomax model [Reference 41].
A very good description of this model and its application is given by Chen [Reference 28] and
the details are not repeated here. The turbulent thermal conductivity is computed by

T = , (205)

where Ep is the frozen specific heat at constant pressure defined in Equation (19) and Prt is the

turbulent Prandtl number. Since ther are few turbulent studies for high enthalpy flows and no

data as to what is a practicc I value for Prt, the stada value of Prt = 0.90 win be used in the

calculations.
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6. BOUNDARY CONDITIONS

Explicit boundary conditions are applied throughout using a first order extrapolation to a

layer of phantom cells surrounding the computational domain. All inflow and outflow bound-

aries incorporate the characteristic variable boundary conditions, CVBC's, as developed by Janus

[Reference 42], which allow flow information to be propagated in the direction of the character-

istic wave speeds. CVBC's are also used at impermeable surfaces for inviscid computations. No-

slip boundary conditions are used at impermeable surfaces for viscous computations along with a

specified pressure gradient and either adiabatic wall or specified wall temperature.

Application of the boundary conditions for a real gas are the same as for a perfect gas, with

the exception that the thermodynamic properties are obtained by means of the Black Box, as was

stated previously in Section II. The known thermodynamic properties resulting from the enforce-

ment of the CVBC subsonic inflow, outflow or impermeable surface boundary condition are

pressure and density and therefore the complete thermodynamic system, C'rS, is defined by us-

ing the "Black Box" as a function of pressure and density, CTS = f(p, L). For the no slip bound-

ary condition with specified temperature, pressure and temperature are the known properties and

hence, CTS = f(p, T).
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SECTION VIII

FLOW SOLVER RESULTS

Numerical results have been obtained using the methods proposed in the previous sections.

As a means of validation, four test cases, two inviscid and two viscous, were examined. The in-

viscid computation involved hypersonic flow about a blunt 90 half-angle cone with a nose radius

of 2.5 in. and the numerical simulation of the Space Shuttle Main Engine (SSME). The two vis-

cous test cases include a standard flat plate computation, for code validation, and a hypersonic

inlet. Also, a numerical study is made of the efficiency of the chemical equilibrium solver.

All of the solutions have been obtained using second order spatial accuracy, advancing the

solution to its steady state by means of the Euler implicit scheme described in Section VII. The

approximate Riemann solver of the Roe type, developed in Section VII, is used for all calcula-

tions and higher order accuracy is attained using the Van Leer limiter.

Characteristic variable boundary conditions are used wherever applicable, including the im-

permeable surface for inviscid computations. No-slip, adiabatic-wall, with zero pressure gradi-

ent boundary conditions are used for the viscous calculations.

The simple 5-Species Air Model is employed as the air chemistry model, along with the

Consistent Kc. The thermodynamic model used is the Vibrational Model. Newton Limiter and

Relative Limiter are used for corrections of the species densities and temperature updates, re-

spectively. Transport properties are provided by the combination of Sutherland Model for the

species values and Wilke's Rule for the mixture values.

1. INVISCID RESULTS

a. BLUNT CONE

The geometry of the blunt cone and the 71 X 26 grid used for the inviscid computations can

be seen in Figure 38. The freestream conditions, corresponding to an altitude of 10 kIn, were:

pressure p*. = 26.5 kPa, density Q w = 0.414 kg/mi3 and temperature T*. = 223 K. Com-

putations were made at Mach number M*. = 10 and zero angle of attack using both the perfect

gas model and the 5-Species Air Model.

The effects of a "real gas" are immediately apparent in Figure 39, where the temperature

profiles along the stagnation streamline are plotted for both reactive and perfect gas computa-

tions. Shock standoff distance and temperature levels are strongly affected by the thermochemi-

cal model chosen. The reduced temperatures for the chemical equilibrium solution are due to the
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conversion of some of the kinetic energy to dissociation energy, where for a perfect gas all of the

kinetic energy would go to thermal energy. Higher densities in the shock layer for the real gas

solution, characteristic of reactive flows [Reference 44], are seen in Figure 40 where the density

profiles along the stagnation streamline are plotted. Figure 41 depicts the temperature profiles

along the body surface, where large temperature differences between the perfect gas and real gas

solutions exist at the nose, but the solutions are in good agreement in the cooler regions, starting

at the shoulder. The previous results correlate nicely with the plot of the mixture composition

along the body surface seen in Figure 42. The plot indicates strong oxygen dissociation at the

nose, but as the flow moves along the body and cools, recombination occurs. Figure 43 depicts

the pressure coefficient along the body surface. It can be seen that pressure is not strongly af-

fected by real gas effects, due to its "mechanical" nature [Reference 45].

b. SSME NOZZLE

The geometry of the SSME nozzle and the 88 x 31 grid used for the mviscid computations

are shown in Figure 44. Combustion chamber conditions correspond to 100% power at sea levc!

and were: mixture ratio of 6.0, Mach number Mc = 0.2, temperature Tc = 3639.0 K, and pres-

sure Pc = 20.24 MPa. Computations were made using both the perfect gas model, with y = 1.18,

and Hydrogen-Oxygen Combustion Model.

Density profiles along the centerline and wall of the nozzle are given in Figure 45. In the

following, the axial distances shown in the figures will be referenced to the throat position. The

results show that there is little difference between the perfect gas and real gas solutions. A great-

er disparity is seen for the temperature profiles in Figure 46. Higher temperatures for the real

gas solutions occur at a point just past the throat. The reason for this becomes apparent when

looking at Figure 47, where the composition along the wall is given: as the flow expands on the

downstream side of the throat, recombination reactions occur, which are exothermic in nature.

Similar computations were made by Wang and Chen [Reference 13], using a pressure-based

flow solver and equilibrium chemistry. Comparisons of the real gas solutions obtained in the

present study with the results obtained by Wang and Chen [Reference 13] are made in Figure 48

and Figure 49, where plots of Mach number profiles and pressure decays are given, respectively.

The figures show excellent agreement between the two sets of results, with the exception being

the throat region. The present study appears to do a better job of capturing the nozzle shock at

the wall. The specific impulse of the SSME nozzle was computed to be 460.0 sec, which is also

in excellent agreement with the value of 460.4 sec predicted by Wang and Chen [Reference 13].
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2. VISCOUS RESULTS

a. FLAT PLATE

In order to validate the viscous capability of the code, solutions for the laminar and turbu-

lent flow over a flat plate were obtained. The freestream conditions were: Mach number

MG = 0.5, temperature T, = 300 K, and Reynolds numbers per unit length, Re /L, of 1.972

104 and 1.972 106, for the laminar and turbulent computations, respectively. The laminar results

for both the perfect gas and 5-Species Air Model, presented in Figure 50, nicely reproduce the

Blasius solution. Similarly, the turbulent results using the 5-Species Air Model, as given in Fig-

ure 51, are seen to be in excellent agreement with the law of the Wall results.

b. INLET

The hypersonic inlet is composed of a flat-surfaced cowl and a 100 ramp, with an inlet

height D = 2 m and exit height of 0.5 D. The overall length is 4.25 D and the cowl length is 0.5

D. Conditions at the inlet are: Mach number M., = 10, pressure p. = 1.015 kPa, density

Q = 1.172 10-2 kg/m 3, temperature T . = 300 K, and Reynolds number based on the inlet

height ReD = 4.4 106. Figure 52 depicts the inlet geometry and 111 x 61 grid used for the vis-

cous calculations. Computations were made using the perfect gas model and the 5-Species Air

Model. Grid packing at the wall resulted in y + values less than 1, which is considered more than

adequate to define the viscous sub-layer.

Figure 53 depicts the temperature profiles along the top and bottom walls of the inlet. Two

important points need to be made about this plot. The first is the gross overproduction of the

temperature values by the perfect gas model. The second is the displaced location of the incident

shock on the top wall; shock location for the real gas solution is slightly downstream of that for

the perfect gas solution. The surface pressure distributions for the top and bottom walls are given

in Figure 54. As was seen previously, pressure is not strongly affected by the inclusion of real

gas effects. Similar results are seen in Figure 55, where the coefficient of skin friction is plotted.

The primary difference in both plots is the displacement of the incident shock. The mixture com-

position along the bottom wall is given in Figure 56, where it can be seen that oxygen is almost

entirely dissociated. Of particular interest is the slight decrease in the mole percentage of the mo-

natomic species, which occurs before the ramp induced oblique shock. This correlates nicely

with the slight drop in temperature seen in Figure 53. Opposite results occur for the expansion.

Figure 57 depicts the Mach number, temperature and pressure profiles along the centerline. As

can be seen, there is very little difference between the solutions for the two thermochemical
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models, other than the reduced shock angle. The real gas effects are local to the boundary layer

and have the greatest impact on the surface temperatures.

3. PERFORMANCE

In order to determine the efficiency of the chemical equilibrium flow solver, a numerical

study was made involving inviscid computations for the blunt cone geometry. CPU times and

iteration counts obtained using the 5-Species Air Model were compared to those obtained using

the perfect gas model. Several techniques for enhancing the efficiency of the solver were imple-

mented and tested. All computations were made on a Silicon Graphics IRIS 4D-340VGX ma-

chine.

The techniques used to enhance the efficiency include the use of vector reduction and chem-

istry freezing, both of which have been described previously in Section IV. Five test cases were

tried using the 5-Species Air Model and compared to the perfect gas solution. Case 1 represents

the baseline computation, where no efficiency techniques are implemented. Vector reduction was

implemented in Cases 2-5, and various freezing strategies were employed for Cases 3-5. The

convergence strategy used for both perfect gas and real gas runs, as well as the efficiency strate-

gies employed are summarized in Table 8.

The results for Cases 1-3 and the perfect gas run are given in Figure 58, where the normal-

ized residuals versus CPU time are plotted. Each symbol on the plots corresponds to 100 cycles.

The perfect gas computation achieves a residual reduction of almost five orders of magnitude in

a little less than one CPU hour. The baseline real gas computation, Case 1, requires 20 CPU

hours to attain a comparable residual reduction. It should be pointed out that the first 200 cycles

accounts for nearly 30 percent of the total CPU time. Using vector reduction, a reduction in CPU

time of almost one half is realized, as can be seen for Case 2. A more significant reduction is at-

tained when the first freezing strategy, Case 3, is employed, resulting in a CPU time savings of

about 85 percent over the baseline computation.

Slight improvements are still obtainable, as is seen in Figure 59, in which the results for

Cases 3-5 are compared to the perfect gas result. The total CPU time required for Case 4 is just

under three hours. However, CPU requirements appear to be little affected by the particular

freezing strategy employed, provided that a freezing strategy is employed. The results for Case

5, where a marginal improvement over Case 4 can be seen for the first 200 cycles but no overall

gain is achieved, confirm this conclusion. Again it should be pointed out that the beginning of

the computation, when variations in flow conditions are significant, requires a large percentage

of the overall CPU time.
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Figure 38 Blunt cone geometry and inviscid grid (71x26)
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Figure 39 Temperature profiles along the stagnation streamline. Blunt cone, mvisicid.

91



10

G- -Perfect Gas

8 5-Species Air

6 - - -O- - O- 0 - e - O- O -,

64-

2--

"0. • . . ......

2MR,

e ePerfect Gas
S5-Species Air

20.

10-

.0.2 -020 0.1 -0.1 -0.05 0.00---

X/RV

Figure 41 Temperature versus distance along the body surface. Blunt cone, inviscid.
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Figure 44 SSME nozzle geometry and inviscid, grid (88x3 1)
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Figure 45 Comparison of density profiles. SSME nozzle.
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Figure 46 Comparison of temperature profiles. SSME nozzle.
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Figure 47 Composition along the wall. SSME nozzle.
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Figure 48 Comparison of Mach number distributions. SSME nozzle.
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Figure 49 Comparison of preure decays. SSME nozzle
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Figure 51 Turbulent velocity profiles for the flat plate.
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Figure 52 Inlet geometry and grid (Illx61x2).
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Figure 53 Temperature profiles along the walls. Inlet, viscous.

98



10'

8

6 Perfect Gas (Bottom)

o 5-pce Aiar (Bottom)
4 A 5-Species Air (Top)

2

0
0 1 2 34 5

XfD

Figure 54 Pressure profiles along the walls. TNet, viscous.

10-2
-Perfect Gas (Bottom)

- -- Perfect Gas (Top)
0 5-Species Air (Bottom)
a 5-Species Air (Top)

0 000

100- 1 2 345

Figure 55 Skin ftiction coefficient profiles along the walls. Inlet, viscous.

99



102

N2

0

10'

N

NO

10,1

02 3 45
XfD

Figur 56 Composition along the bottom wall. Inlet, viscous.

10.0. 0S0

9.07

80 M

7.0

t&0

5.0 TT

-. PerfWc Gas Tr

2&0 
- -

2-0

72.0 2.5 3.0 3.5 4.0'
XfD

Fig=i 57 Mach number, pressure and temperture distributiowm along the centerine. Inlet, viscous.

100



Vector Reduction / Number of Cycles FrozenCycle CFL # Order Case #1 Case #2 Case#3 Case #4 Case #5

0-100 0.5 1st N/0 Y/O Y/5 Y/10 Y/20

100-200 1.0 2nd N/0 Y/0 Y/10 Y/20 Y/20

200-300 2.0 2nd N/0 Y/0 Y/10 Y/20 Y/50

300-400 4.0 2nd N/0 Y/0 Y/25 Y/60 Y/ 50

400-1000 4.0 2nd N/0 Y/0 Y/50 Y/60 Y/60

Table 8 Convergence and efficiency strategies.
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Figure 58 Comparison of residuals versus CPU time. Cases 1-3.
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Figure 59 Comparion of reiduals versus CPU time. Cases 3-5.
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SECTION IX

SUMMARY AND CONCLUSIONS

The goal of the present study has been the development of an efficient solver for flows in

local chemical equilibrium. The work has been carried out in two phases: the development of a

"Black Box" solver for the determination of the equilibrium composition and thermodynamic

properties; and the incorporation of this Black Box into a perfect gas flow solver that has been

modified to include real gas effects. The end result is a numerical tool, whereby the solutions for

high-temperature, high-speed flow fields can be efficiently obtained without the enormous com-

putational cost associated with finite-rate chemistry.

A Black Box chemical equilibrium solver was developed for homogeneous mixtures of ther-

mally perfect gases. Several practical chemistry models, describing air mixtures, combustion

mixtures and a plasma, were implemented. The solver was written in a generic fashion, whereby

the inclusion of additional chemistry models of interest is a relatively simple process. Two solu-

tion methods for the determination of the equilibrium composition were derived and implement-

ed, the Mass Constraint Technique and the Degree of Advancement Technique. A third algo-

rithm was explored briefly, but was found to be inadequate for the problem at hand, although

further testing may be indicated. The Black Box provides the choice between two thermodynam-

ic models, Vibrational Model and Curvefit Model, and two methods for the evaluation of the

equilibrium constant, Curvefit Kc and Consistent Kc. For viscous computations, two procedures

for the evaluation of the species transport properties were implemented, Sutherland Model and

Gupta Model, and mixture values can be obtained with either Wilke Rule or Gupta Rule.

The Black Box was thoroughly tested for both efficiency and robustness. Although short-

comings were found in the basic algorithms, several efficiency saving and robustness enhancing

techniques were implemented. The end result is a reliable solver for the determination of the

composition and thermodynamic properties for an equilibrium gas mixture. The chemistry mod-

els that have been implemented were also tested on various conditions. The results show that the

Black Box accurately predicts both composition and properties for a wide range of chemistry

models, and illustrate the limitations of the perfect gas assumption.

The incorporation of "real gas" effects into an existing perfect gas flow solver posed an ex-

citing challenge. Several modifications to the existing code were made, including the develop-

ment of a new approximate Riemann solver for an arbitrary real gas. Real gas versions for the

Steger-Warming flux-vector split scheme, split-flux Jacobians, and Roe-type flux-difference

split scheme were derived and implemented. The real gas formulations were developed in a

manner whereby they reduce to their perfect gas versions in a straightforward fashion.
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Hypersonic flows, both inviscid and viscous, for a few test cases were investigated, as well

as a validation computation using the ubiquitous flat plate. The results were encouraging, and

demonstrated the fallacy of relying on the perfect gas assumption for high Mach number flows.

The results for a hypersonic inlet also showed the importance of viscous effects in the study of

real gas flows. Finally, an efficiency study was made of the chemical equilibrium flow solver.

Techniques implemented to enhance efficiency worked very well. The results indicated that
while the real gas computations are more expensive than comparable perfect gas computations,

they are within reason and much more so than finite-rate computations.

Further work is necessary in several areas. Increasing the robustness of the Degree of Ad-

vancement Technique could also increase the efficiency of the flow solver, since this technique

was found to be the more efficient of the "Black Box" algorithms. Further investigation of the

chemical equilibrium solver developed by Meintjes and Morgan [Reference 4], might also prove
profitable. An extended study of the effects of the number of species on flow solver efficiency is

also warranted. In the present study, the "gamma" derivatives appearing in the split flux Jaco-
bians were assumed to be zero, and the effects of this need to be ascertained. Numerical studies

also need to be made of the transport property calculation procedures. The effects of using an
improved initial guess for the Black Box computations, discussed in Section IV, also need to be

investigated. Finally, multiblock capability needs to be added to the code, providing the ability to

obtain solutions for more challenging geometries, such as the national aerospace plane (NASP),

space shuttle and hypersonic vehicles with stores.
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"APPENDIX A

SPEED OF SOUND AND PRESSURE DERIVATIVES
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1. SPEED OF SOUND

The speed of sound is defined by the relation

'= p (A.1)

Writing the combined 1st and 2nd Laws of Thermodynamics, for a gas in chemical equilibrium

Tds = de - PdQ , (A.2)
Q2

the partial derivative of internal energy with respect to density at constant entropy can be ob-

tained as

(e) (A.3)

Expanding the partial derivative in Equation (A.1) and using the result from Equation (A.3), the
equation for the speed of sound can be written in the following form() p+)~"

a2e= • (A.4)

The thermal and caloric equations of state for an equilibrium mixture of thermally perfect gases

can be written as

N

p - QRT X iRiT' (A.5)

NN

Yei -- i cv + hf= (A.6)
be fi i4 I + j

The above equations can be cast in differential form, as follows

N

dp = QRdT + T RgdT + RTdQ, (A.7)
i-i1

N

de = BYdT + e~ciY, (A.8)

where the differential of the mass fractions is given by

(aYi\ (aYi \
dYi -') (A.9)
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Substituting Equations (A.8) and (A.9) into Equation (A.7), the pressure differential can be writ-

ten as

NE

+ R + QT Ri[-±- d)
dp= N ( de N (ayi)dQJ

iai=

Now the partial derivatives of pressure with respect to internal energy at constant density and

with respect to density at constant internal energy can be easily obtained as
N

+{ TE Ngit•Yi)I+ k-y:,
faeJ N (A.11)

i=l

N

S ay N R i(-= )

"(aP) --T-TR. e) N(A.12)

Substituting these results into Equation (A.4) and after some algebra, the equation for the

speed of sound can be written in the more familiar form

a2 = r" , (A. 13)

where the isentropic index is defined as
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N
ay1\

r ~+
N

•, +/. •aT)

N ayjý(A.14)• N 'k+ I

+ (aiy)l• Q RiT -- ei ... = 1._.

RT IIQ
Ev + 3e ei()

i= 1()

Defining y to be the ratio of the enthalpy and internal energy derivatives at constant density, as

follows

(T) (L]r k + T N Ri(a!)

I +- = 1 + N (A.15)
Ff'.l) TROF) Ev+ Zeit"•}

and substituting this definition into Equation (A.14), the isentropic index can be rewritten as

r - v + ( yaT' [P.T- ry- l)ej .

Similarly, the pressure derivatives defined in Equalions (A.11) and (A.12), can be rewritten as

(Oe')= Q (-1 (A.17)

ap o- u(1 + r y-).(.8

2. PRESSURE DERIVATIVES

A key part in the development of a flow solver for real gases is the evaluation of the pres-

sure derivatives, specifically the partial derivatives of pressure with respect to the dependent

variable vector, Q, as follows

( i • p a p ( ap \p ap N]T

a) ( Q) Nu) 'kQv J'J OTQ eA o (A- 19)

The pressure differential can be written as
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dp =(LQ) dQ + (La)pd
e e)Q de(A.20)

Lap d (Q p\~ + ( d~ + 2 2dQw + -( d~~ (A20
- GQ +k )d~ \aQPV-) ~" (aQ;w-) (aQe.)

and internal energy is given by

Qeo (Qu) 2 + (Qv) 2 + (Qw) 2

Q 2Q2 (A.21)

Differentiating Equation (A.21), and substituting the result into Equation (A.20), the following

relations for the pressure derivatives are found

-- (aP ( - )( 06-h) +a2, (A.22)

(apy ) - u(-1), (A.23)

ap - ) -v(Y- 1), (A.24)

(p 2 =e I 2\ = w (A.26)

where q2 _ U2 + V2 t- W2 .
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APPENDIX B

EIGENVALUES AND EIGENVECrORS OF THE INVISCID FLUX JACOBIANS
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The following development parallels the work done by Janus [Reference 42] and therefore

many steps will be intentionally left out. The primary focus is the extension of the previous work

to real gases.

1. CONSERVATIVE VARIABLE JACOBIAN MATRIX

The inviscid flux Jacobians are given by

a=8s (B.1)
aQ'

where the dependent variable vector and generic flux vector are

QQPk
[?u QU~k + pkx

Q= J[QV] S-- QV~k+ pky (13.2)
QW QWPk + pkz
LQe~ k(Qeo + p) - pkt

After differentiating, the components of the inviscid Jacobian matrix are given by rows as

911 "" kx , 12 = ky , 13 = kz g 14 = kt , S15 -- 0 , (B3.3)

[(i ) Q[L 2]kx- ()
S22 [(Op Q Op [e + ll

kk + - kJ k2 - uOk,

g24 Q aeQ ae
(LP)Q

u (Op\ k +rk 1  -1~ lk+ (B.5)
g32 - e + vk), S, 1 g 3 3 _Q_. IaeQvk + Y k'

gQ ( faeplky + vkz, g35 - k ]ky.
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g [= [(Lp\ (oP 1r - wok,

542 = - B z + Wkx, 5 p e z + wky, (B.6)

Q 1 (LaS)

(,P)Q

544p I(L p eI

{[()S ae hl)
352 -- hx - 9, 553 hky - Y- (L)ok, (].7)

g4=h~z - (a\Ok g55 LO (2a),]Ok + kt
Q pe I,

The main difference between the present formulation and the perfect gas formulation is the eval-

uation of the pressure derivatives. Substituting the relations for the pressure derivatives devel-

aped in Appendix A, the second through fifth row (Equations (B.4)-(B.7)) of the Jacobian ma-
trix can now be rewritten as

$21 = (40 + V)kX - UOk,

S22 = (2 - Y)ukx + k, 2=3 - v( - I)kx + uk,, (B.8)

g24 = - wy- - •)kx + uk, g25 = (Y - 1)kx,

=31 = ((P + V)ky - VOk,

'g32 = - u(y- 1)ky + vkx, 33 (2 -Y)vky + k, (B.9)

g34 =-w(-1)ky + vkz, 9 3 5 ( )k
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S41 = (4 + V)kz - wok,

942 = - u(Y- 1)kz + wkx, 5 43 = -v(7- 1)kz + wky, (B.10)

S44 = (2 - Y)wkz + Pk, S45 = (Y - 1)kz,

g51 = 1(1+ V) hO}0k,

$52 = hNkx - u(Y- 1)0k, g53 = hAkY - v(7- 1)0k, (B.11)

$54 =hokz - w(Y- 1)0k, 5 =- Pk-(- 1)0k,

where

2 ? 1 (u 2 + V2 +W
-- u2 \ +w2), ' 12)

- a2 - h(7 - 1) .

For a perfect gas, 7 will be given by the "standard" ratio of specific heats y, V will be identically
zero, and the above real gas formulation will identically reduce to its perfect gas counterpart.

2. PRIMITIVE VARIABLE JACOBIAN MATRIX

In order to work with a more amiable eigensystem, the conservative variable system is con-

verted to one based on the primitive variables, where q = J[Q, U, v, W, p]T is the vector of primi-

tive variables. The transformation matrix M, given by M = aQ/aq, is

1 0 0 0 0
u Q 0 0 0
v 0 Q 0 0

M- w 0 0Q 0 (B.13)

7-1 Qu Qv Qw -:7-I1

Using the similarity transformation, x = M-1 " M, the primitive variable Jacobian matrix x is

given by
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"lk Qkx Qky Qkz 0

o Ok 0 0 Qk-

2-- 0 0 Ok 0 - (B.14)
kz

0".0 0 pi t "

0 Qa2k. Qa2ky Qa2kz Ak

which is identical to the perfect gas formulation obtained by Janus [Reference 42].

The eigenvalues, obtained by solving the equation Kx - )II = 0, are

4=pOk + aAM, (B.15)

O = a' - .

Considering the equation (% - Xl)r = 0 (where r are the right eigenvectors), the right eigenvec-

tor matrix Pk for the primitive variable Jacobians is obtained as

ak2  aky ak_ a a

- kx kx

Pk -ky 0 - kx ky ky(B.16)

0 o x 0 kz kz_

0 0 0 a2a a2a

where a f Q/a r2 and the right eigenvectors are given by columns. Similarly, the matrix of left

eigenvectors, Pk1 , can be obtained
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"kx o k ~y-.-x2
0 ikz y-Ca

ky ky- -kz 0 - x 0 a2
!L iy - i. o kz

p; a- -i-a 2  (B.17)

O - iy iz

where I = l/Qa )2- and the left eigenvectors are given by rows. At this point, the eigenvector

matrices for the conservative variable Jacobians are easily obtained from the following relations

Tk - IMWk, (B.18)

TkI = P; 1 M-,

where Tk is the matrix whose columns are the right eigenvectors and Tk is the matrix whose

rows are the left eigenvectors. Performing the matrix multiplications, the right eigenvectors are

found to be

Ck1
aukx

avk1 + Qik
T= Cawkx - Qky

cr x( 240 ) + Q(Vkz - wk.)

auky - Qik

avky
r2 = awk, + Qkx

V) + Q(wX - Uk)
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akz
aukz + (k

avkz - Q kx

= awkz

aizd .-c +l V (k -V 1

+ a(Wk y k

aa2 QkxZQ

(Y- -1)~ Uic

(- 1)-
kx

U42 wkY-Q

12 (Y- 1) -
L Ct2 Xk

(Y-1-i) - i

12~ (7- 1)-vi
aa2
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+ -i uk-)

(Y- - 1) u + Tky

13 (-- - 21) viz kX

(7 - 1) -

++o + VTaex
- u((- 1) + a1)x

14,5 - v(y- - ) ± aiy (13.20)

- w(7- 1) ± akz
L (y - ') J

Similar to what was seen for the inviscid Jacobians, the eigenvectors will nicely reduce to their

perfect gas formulation.
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APPENDIX C

SPLUT FLUX JACOBIANS
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The following derivation for the split flux Jacobians follows closely the perfect gas develop-

ment given by Belk [Reference 35]. Therefore, only the steps needed to clarify the real gas ex-

tensions will be given.

1. "TRUE" JACOBIANS

The generalized Steger-Warming split flux vectors for an arbitrary gas, as developed by Vi-

nokur and Montagn6 [Reference 33], are

Q
QU

Kk r QW

Q a

Q(u + akx) Q(u - akx)

K± Q(v + aky) K± 1 Q(v - aky) X(), (C-1)4 2 Q(W + ak) 4 5 2r Q(w-ak) 5

O(ho + a~k) Q(ho - adk)j

where the eigenvalues can be written as

2

jIW(Ok + a) ±0 + aW
42

%(±) -IW(1 - a) ± 'I0k - a' (C.2)
5 2

The "true" (analytical) Jacobian, denoted by AX, is given by

= 8, (C.3)

i= 1A,5 il- 1,.5

The split flux vectors can be redefined as

0 gi K; (C.5)
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where

g1 ="- 1 9 (C.6)

Q Q
Qv
QU Q(u ± kx)

K•= Qv K: = Q(v ± aky) (C.7)
QW Q(w ± akz)

Q (h r- i Q(hO ± a6k)

Expanding the partial differentiation of Equation (C.4), the split flux Jacobians can be viewed as

having three separate contributions, as follows

A = K• +Ar +A., (C.8)

where

ax!±) (C.9)Ar - )bkgi K ' a (C.I)

agi (C.10)

-- - g± (C .1 1 )

2. 'W' CONTRIBUTIONS

Tei contributions to the split flux Jacobians arising from the partial differentiation of the

eigenvalues can be written as

r r lL, + ± [L, + Ls]

ur-riL, + k[(u + ai,)L, + (u- -•k)L5]

v r-L , + L [(v+ aky)L 4 +(v -aiy)L 5] (C. 1)

w r iLI + 2[(w +a40L, +(w - ai)Ls,]
(o r •• • ,L, + [O + a6,)L4 + (ho -A,)L,

In the above, the vectors LI, L4 and Ls, are the eigenvalue derivatives, which are found to be
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(at) 2 =0, (a') = I , (a')2 =0, (a') =0' (at) = 0 , (C.18)

(at*1 )3 1 = 0 ' (at, )32 = 0 , (a *)33  = 1, (a ) = 0 , (a *)3 1 = 0 , (C.19)

(, O(at , (at* = 0 , (al = , (atl 5 =0, (C.20)( 1)410. 42 : /43a 0 , al ' Ia

() p 2Qa aa + a2 aF a2

(at) 5 - I - 1 r (F- 1)2  ]-- 1f-

(a) 5  Op 2Qa aa + ipa2  OF

)52 aQu r- 1 aQU (F- 1)2 Lu '

(at 1 _ 2Qa aa + 0a2  or
(l)53 f r - IOQv (f - 1)2 aQV '

S ap_ 2Qa aa + (a 2  Or
(a 1) O OQW r - l aOw (1 - 1)2 aOW

(a - aOp 2Qa Oa + Qa2 _ 1 + 1 (C.21)

a)55  aOo I Qeo (]r - 1)2 O~e0

and the components of the matrices, A;,5 = aK;,5/aQ, are

(a:5),l- 1, (a:,5)2 = O, (a4)13 = 0, (45)14 - O' (a:),5 0, (C.22)

=* a ~ Oa

= (ka)x - ± Qkx 3,
(a4(a;' ')1 + aQ-• -

(a;424 = - k (425 = + Qkx-o , (C.23)

= ~ak, aa

( a••, - L,3y -aak •

3 "yaa (a:,5) 33 = 1 Q

(aa5)34 a(4.)35 = , (C.24)

""i -•i aa

* ~ aa•- a a
(445)42=~ QkZaQ (a:5)43 = ' Oa
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(4*,5) 8 1 = ± i, e0e (C.25)
( a,5)(a:_)4p " aa

,p aa
(a:,5)5 = aQ' kQk

(a:4553 = p±Qk _a av. ap ~aa

(a4,5)s, 8Qe--' kaaP - aa
= .- k . +1 (C.26)

5. SPEED OF SOUND DERIVATIVES

Recalling the definition for the speed of sound

a 2 =r (C.27)

and differentiating, the following relation is obtained

._a = a R + L 8p a dQ (C.28)
aqi 2!N q% 2Qa aqi 2Q (qi

Using Equation (C.28), the speed of sound derivatives are found to be

aa a r ar ap a
aQ Tr TQ 2(QaO TQ

_a = a ar + r ap
BQu 2r aQu 2Qa aQu '

a....a ar + r ap
BQv 2r aQv 2Qa aQv '

a_ __ a r + r ap
aQw 2r aQw 2Qa aQw'

aa a ar + 1L ap (C.29)
aQeo 2r aQeo 2Qa aQeo
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6. SPLIT FLUX JACOBIAN MATRIX

The split flux Jacobian can be constructed by summing up the contributions already pres-

ented. The components of the split flux Jacobian matrix A are given below, where the follow-

ing relations are used

A(+)
11== , (C.30)

^(+) A(±)12 = i4 -- 5 ,(C.3 1)

A(±) A(+)

13 = i 4  +15 , (C.32)

14 =il 1  +4 . (C.33)

The components of the first row are

kt a +aZ f C ar
ill --- ktIl _1- I4 + 'FfI2 + CIATQ_ Ma1Bo'

a 12 = kfxI- TI4 + C^IA2 p + i ar
raQu aBu

_ky ap C O
a 13 = kyI, -- I14 + C a@p + CB

_kz ap c ar
a 14 = kzI1 - _"I4 + a+ r

kt a ap aI

aII - •tI1 - - 1I4 + T' I2 + CIA TC + ClBN'Q

k N• C+ alr
a12 =xlI - .ý-,4 + CIAlBB-u + C -- ,

a13 =kyI - -- I4 + CIA + CIBa-v

Il4 kj1TI4 + CIAT + CIa-i-

Sas C1A +.e lB a-- (C.34).

where

CIA =-12 , (C.35)
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C IB = 1- jý04 - AI 2 ] (C.36)

The components of the second row are

21 = - U~kIl -- "'I4 -- (U + kx0k)I2 + 'kxktI2 + CI + C2B -

' Uk+kI, + _L(1 + ki2)I2 + C2L + C A
a 2 -(kX~kIl r '2r x)2Cay- aBQU

uky kk )C•

S= UkyI --- r-I4 +--I2 + C2A -p + C2B- 'o
8-2Ir aak Op ar

4 = uZI1 - -t-I4 + -- 12 + C2A a- + C2B--

S= C2A-ap + C2B , (C.37)

aQe0o 2BQeo

where

C2 = (u + kx41k)I + 2akxI 2] (C.38)

c.B = -[2k4-+ k)] (C.39)

The components of the third row are
Sap + or

-- - I--r(v + 401k2 + -yI2 + CULP + C3B3L-,

832 = -vk'I1  14 T 4r~I+3~ 2X rvix_ akxky ap+ 3 ar

833 -(vky + k)I1 vky +k 2 + C

r I 4 +j +-(1+ kky)I2 + C3A + C3sBVvr= 2r• aap a(r
34 = V'ZI -- -i--14 + I 2 + C3Aa-- + C3B or

•a= c 3 A0 + C r-

where

CSA = L[ (v + 4013k)I + 2aly12 ] (C.41)

C3B = -j--[VikI4 - RV + k4)12] (C.42)
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The components of the fourth row are

a 4- -I e -(w + kk)I2 + TkzktI2 + C 4 AL + C4B L

a42 = -wk4l +a -'-1z2 + 40 + 2 4 B- ,3

= - Wk 14+ I2 +kC4kZ +aC4. a
a43 = w k)l, wky 1 4  + •,Ik 1 2 C4A r4B a

(wz+6 + _(, + kz )2 + C4A + C4B a-
F 2r +QW al

a45 = C4A + C4B. ,r (C.43)

where

C4A = 4a[ (W + 4013 + 24Z•2] . (C.44)

C4B = rg2 [WOk'4 - A(W + k02] (C.45)

The components of the fifth row are

OkQ1O + a2 )T a 2"•51 hOkl 4 -I (hO+Ok~k)I2 aj-kxktI2

-CsA+ C5BA7

a52 = hoixi- kx(ho + a2) 14 +alx - ap + A
r • 0 k + k)I2 - CSA• + C5B a-

_= hokyi1  ky(ho + a2) 1 aky( ~ C r
r5 ="oy,1 + "•(k + 6k0I2 - CiA -L- + C5B•

r 2 . aBp arp
as-4 = h~Ijý-klO I¢ + a2) I4 + "'k(6k +{ 6k0I2 -- C5A-^ + C5B ar'

2 - + ar (C.46)

where

CSA = L14 + -k-I 3 + -(bo + 0 k1k)I2 + a 12 (C.47)

CSB = 2 ho4kl4 + A(hN + 4k0k)I2] (C.48)
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The pressure derivatives appearing in the above formulation are given by Equations (A.22) -
(A.26). In the present work, the "gamma" derivatives are assumed to be zero, since their deter-
mination is much involved and would necessitate the use of numerical Jacobians, either fully or
in some form of hybrid scheme. The above formulation differs from the perfect gas formulation
in the evaluation of the pressure derivatives, the use of the isentropic index F as opposed to the
ratio of specific heats y, and the appearance of the "gamma" derivatives. With these consider-
ations in mind, the split flux Jacobian matrix for a gas in chemical equilibrium can be shown to
reduce to its prefect gas counterpart.
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ROE AVERAGED VARIABLES
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1. JUMP CONDMONS

The key step in the development of an approximate Riemann solver is to determine averages

of eigenvalues, eigenvectors, and wave strengths such that the jump conditions

5

[Q]j " A Oi ri , (D. 1)
i=-I

and

5

SI a &i Xii ri, (D.2)

are satisfied. The averaged eigenvalues read

A A A A

%I = )'2 X3 = JVWkIl~,
A A

X4 = JlVMd( 1k + a ), (D.3)
A A

X5 = J1VM( 1Pk - a )
where the directional subscript k has been dropped for clarity. The averaged eigenvectors read

akx

A AA A

L ai (ho a~k + QOky i

a•ky
a•y - Qiy

r2 Af A•:

A A2 ^ A•

L ay(ho a M 1) + Qokix &

A

-a 4~Y- 1) ,,-~r 7

A AA

r (- 1)) A (D

A 
1 A
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and the wave strengths read

I -- -!zlu + kgx-W]1,
aA

a

2. r - EzUATIONS

The system given by Equaion (D.1) can be wrntten as

1Q11 = 1Q11, (D>.6)

I[Qu11 = ui[Q]] + •I[u]] , (D.7)

I[Qv1 = oIIli + •DvD , (D.s)

I[QwI = P4 Qj + •I[w], (D.9)

3. ,1Q - EQUATIONS

The system given by Equation (D.2) can be written as

A A

AQ~ A kQ 1~I (D31)

EQU~k + Pk1I = U[kI[Q] + 6[kU] + fO[ + kIQP]J , (D.12)
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V•E AA6k +AAjP

+lyk "+" pkyý = )IQII + Q kI[V]1 + QV[O0]] + kyL[pI, (D.13)
aQWýk + PkD = WAkIL[Q] + AAkEWl + AWIA0kI] + kzaP]] , (D.14)

l[hO~-k •A - Pk1[Q]] + AAk(U[U]] + AI[V] + 4W])

AA A2 A (D.15)
1[k [] + 6k1P]j + A0 + a _ (

Multiplying each IQ]]-momentum equation, Equations (D.7) - (D.9), by their correspond-
ing directional metric, as follows

kx1QUuj = OUkl~ + Qkx1U] . (D.16)

ky[IQVI = 0 7y1QJ + A yIVIi , (D.17)

J3W]i = ~iJj+ A&kzl~w] (D.18)

and adding all three equations, the following is obtained

Iwu]l + 1y4v4 + 6iw1w = (Aix + oiy + *,)Jo•
+ (Iui1 + viY + w1j) (D.19)+ Q~ v,

Adding [(?]kt to both sides and regrouping yields

ILQjk = O + 60k] (D.20)
which is identically Equation (D.1I). Following the same procedure for the [F]I-momentum

equations, Equations (D.12) - (D.14), and adding [Q)kOkt to both sides, the result is

-2 A
2  

2 ~

JQlk] = iP&kIQ + 2 Pk[l0 k]• (D.21)

However, noting that the jump in*the temporal metric is zero, the jump in the relative contravari-
ant velocity can be written as

[[ki = [uix + viy + wk,]j + lid [6J (D.22)

Now Equations (D.20) and (D.21) can be rewritten as

PkQPl +10k (D13)
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-2 2 A ~WJ = i• •÷ 2•kM k (D.24)

Solving for A and •k, the following averages are obtained

Q I ( 2 (D.25)

) (k)r Fi + (k)1]Q

where the arithmetic average, < - > = (. + ()]/2, has been utilized. Similar to the result

for the relative contravariant velocity, the averages for the absolute contravariant velocity and

Cartesian velocities are given by

Ok= A q = (u) A % (v) , w % (W),(D.27)

where A denotes the "standard" Roe average

= (*)rTF + (D.28)•(.) = • + F (.2S
A

Looking at the energy equations, Equations (D.10) and (D.15), multiplying the former by Pk,

and subtracting the result from the latter, the following is obtained

A A
2  

A

10h0k - pk - PkWdo = kI[P] + A + a - ([Ok (D.29)

Recalling that

A A
2  

AA

V a -(9- l)h, (D.30)

A - 2I.+A2 +A2\ (D.31)

]= , (D.32)

Equation (D.29) can be rewritten as

[QW kl = Qhofi]I + Pk[Qbj • (D33)

Solving the above results in the following average for the total enthalpy ho
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ho = (ho) (D.34)

Returning to Equation (D. 10), and splitting the total energy into internal and kinetic contribu-

tions, results in the following

A-lA
ko Al [1Q1] + QiP]]+ + [+ i' w]1) (D.35)

Y-

From Equation (D.24) the following formulas for the Cartesian velocities can be obtained

I[Qu•2] = A2IQ + 20[1u1,

[QV2]] = [o1Q + 24A[vB,
Iow2] = A2[1] + 2•AwID.

Substituting the above relations into Equation (D.35), the following formulation for the internal

energy is obtained

A

iQel = Aip11 _ A V_ W I (D.36)
Y- - _I

In order to obtain all jumps in terms of Q and T, the following relations are introduced

N

Ip]] = IR[T1] + R1Q11 + •T E RJi[']], (D.37)
A Ai

N ^N N ^

JQe]] = Q •( [1ei]i + + Z()ei[TQ ] • (D.38)
j=1 i=1 i=1

In the above, averages for mixture gas constant, temperature, species intemral energy and species

mass fraction are given by the "standard" Roe formulas, as follows

A A A ARf = ,~z T = AMT, e. = A(ei) , Yi A (yi) • (D.39)

The jump in species internal energy can be written as

jeý = UvJT1, (D.40)

where U,, is an integral average

vi cv,(z)dc (D.41)
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The jump in the species mass fractions can be obtained as

aY1] =- flrm'' (D.42)

and rewritten using integral averages as follows

-ýi (_i Q]] + (-ýY')LIT]] (D.43)

Vinokur [Reference 71 developed a procedure that would identically satisfy Equation (D.43).

However, this procedure is complicated and numerically expensive. The simplest approximation

for the integral averages is the. trapezoidal rule, i.e.

[Lp ] =- L 1 ( I)]r - Qi) (D.44)

which is the choice adopted in this work. Substituting Equations (D.37) - (D.43) into Equation

(D.36) and combining terms, results in the following

16N-NAA AA N

0 A A R QT{6iY1 1 Ri Y-T)

+/--I./i A{ ARi [O]

=0. (D.45)

In order for Equation (D.45) to be satisfied, both coefficients, denoted by { }, must be identical-
ly zero, thus giving the following two equations

INQ'W\~ Q QT R(ý je^ Ai A- 0- R "O (ID.46)

- - =0

AA A NA N

e Q A-R A QT

Solving Equation (D.46) results in the average for the ratio of enthalpy and internal energy de-
rivatives, as follows
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N

^ i=l

-- 1 -F-iN 1'( .•

where

A

Equation (D.47) can be solved for Iji, as follows

where the average for the isentropic index is taken to have the same form as given in Equation

(A.16), as follows

Y +•' N•-ir ) (D.48)

A -o

Substituting Equation (D.50) into Equation (D.30) results in the following average for the speed

of sound

I~l•'r + (--e)
aT

which can be rearranged in the form

whereq =1 ffu + v2 + w .For aperfect gas, where I" = ,y = y, the averages for the Cartesian

velocity components and total enthalpy are the same, and

NN

I T 90(1D.54)

i-! -
Consequently, the term in braces in Equation (.53) will be identically zero, and the relation for

the averaged speed of sound will reduce to
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a] 
(D.55)

Swhich is the original formula developed by Roe [Reference 34].
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APPENDIX E
DISCRETIZED VISCOUS JACOBIANS
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1. DISCRETIZATION OF VISCOUS JACOBIANS

The following are the components of the discretized viscous Jacobian. matrix, taken at cell

face 1 +1/2

= =;)1 = = = 0 , 15 1

(,§V)21 =~. 3 +Q

(~~v*)23 = ~ 1F Ik{[ kxk]()

2

0§V*2+= 3kY (Q)},

= T- IAk i{[xi] y )
1138



(vg )35 =0 (E.3)

()41 70 ±3 lkk { L'+()

(~)2 =F ~ki{[xizi()

±)2= T +A It ]()

±~)4 = 0F 'AM.3I

= gv Ik{) 1 +1 ()--[k]+(k}

= T IAkif +~G (2I~
WI±)44yv 3 z) 1

13



+ (_j k~im
(~*)= 1AkI{(%J) ++ (i+ I'Ir1  - + [3!Z~k]1J\Q

+ 3id zv*1+(12

=9:: T 1"i (90+ ( 8) 2 ( O)J (E.5)

In the above,

V* = kxu + ky -L. + kz ,aw (E.6)

q2 = U2 + V2 + w 2 ,(E.7)

and

= H1 (-)1- =(61 (E.8)

The temperature derivatives can be derived in a similar fashion as the pressure derivatives, see

Appendix A. The final results read

(IM 1 = 1
, N +V (E.9)

-aT -I N X. ei("a" (E.1O)

(!LT = ffi e e2 +Y (E.11)

aQ) (ýQ) (6e)Q Q C4x ei(ay.)

( aT uL(T) i_ (E.12)
fQiu QBCQ-e), QCV

S -T _ (Tý - v , (E.13)
BQ-v Q kBe;Q QCv'

(aT w/T (M i _ waT I -IV (E.14)

BQeoJ r\e) Qc-
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